連続降雨中の $Zn^{2+} \cdot Ca^{2+} \cdot Mg^{2+} \cdot K^+ \cdot Na^+$

濃度の変動とその原因について*

竹 内 丑 雄**

要旨

連続降雨中の $Zn^{2+} \cdot Ca^{2+} \cdot Mg^{2+} \cdot K^+ \cdot Na^+$ 濃度は、つねに変動している. この変動をきたす主な原因 として、降水時の上空に流入する気塊と、雨量強度とが考えられる. 南方(海洋上)から気塊が流入した場 合は、 $Na^+ \cdot K^+$ の濃度が高くその降下量は多くなり、北方(陸地上空)よりの気塊が流入したときは、 $Ca^{2+} \cdot Mg^{2+}$ 濃度が高くなり、その降下量が多くなる. また雨量強度が大きくなると濃度はひくく、雨量 強度が小さくなると濃度が高くなる傾向がある.

1. まえがき

降りつづく雨の中の化学物質濃度は、つねに変動して いる.三宅・杉浦(1952)は、台風が通過した際の降雨 中の化学成分濃度の変化をみているが、これは一つの場 合であり台風による降雨においても、さまざまな変動を している.

著者(1972)は、さきに連続降雨中の化学物質濃度の 変動は、降雨時の上空に流入する気塊によるものである ことを示した。が、本稿において、降水中の Zn^{2+} ・ $Ca^{2+} \cdot Mg^{2+} \cdot K^+ \cdot Na^+$ 濃度の変動の要因は、降水時の 上空に流入する気塊の流跡線と、雨量強度によるもので あることを明らかにし、さらに化学物質の降下量につい て考察を加える。

2. 採水と化学物質濃度の測定

2.1 採水場所と採水方法

東京都武蔵野市吉祥寺 成蹊小学校露場

採水はたて 40 cm, よこ 27 cm, 深さ 5 cm の琺瑯製 のパットをビニールで覆ったものを, 高さ 65 cm の台 上において行なう.

2.2 測定方法,原子吸光分光分析

3. Zn²⁺・Ca²⁺・Mg²⁺・K⁺・Na⁺ 濃度の変動

- 3.1 10月29~30日 (1971) と2月4~5日 (1972) の降雨
- * Time Variation of Concentrations of $Zn^{2+} \cdot Ca^{2+} \cdot Mg^{2+} \cdot K^+$ and Na^+ in the Continuous Rainfall and Its Causes.
- ** U. Takeuchi 成蹊小学校 ——1972年12月8日受理——

第1表

(単位 ppm)

採水 順序	化学成分 採水時刻	Zn ²⁺	Ca ²⁺	Mg^{2+}	K+	Na ⁺
1	29日 30日 16:55~ 9:10	0.027	0. 221	0.054	0.03	0.23
2	9:10~9:40	0. 020	0.069	0.012	0.01	0.05
3	9:40~10:10	0.020	0.069	0.008	0.01	0.05
4	10:10~10:40	0. 020	0.069	0.006	0.03	0.06
5	$10:40 \sim 11:10$	0.010	0. 088	0.006	0.03	0.06
6	11:10~11:40	0.010	0.077	0.015	0.03	0.05
7	11:40~12:10	0.019	0.051	0.013	0.01	0.02
8	12:10~12:40	0. 020	0.052	0.014	0.01	0.02
9	12:40~13:10	0.024	0.052	0.021	0.03	0.02
10	13:10~13:24	0.010	0.019	0.015	0.03	0.02
11	$13:24 \sim 15:20$	0. 020	0.077	0.008	0.01	0.03
12	15:20~16:10	0.006	0.008	0.001	0.01	0.01
13	$16:10 \sim 17:32$	0.005	0.017	0.001	0.01	0.01
14	$17:32 \sim 18:55$	0.006	0.058	0.005	0.01	0.02
15	$18:55 \sim 20:10$	0.002	0.017	0.002	0.01	0.03
16	$20:10 \sim 21:34$	0.001	0.009	0.001	0.01	0.01

第1表に10月29~30日,第2表に2月4~5日の降水 中の濃度をしめす.

第1,2表の Zn²⁺ をのぞく他の成分の濃度と、金森 (1962) が測定したわが国における降水の平均濃度とを 比較すると、第3表の如くである.

なお Zn^{2+} については,森田 (1955)の測定がある. つぎの第4表は森田の測定によるものと,吉祥寺における降水中の Zn^{2+} 濃度をしめしたものである. (単位 ppm)

採水 順序	化学成分 採水時刻	Zn ²⁺	Ca ²⁺	Mg ²⁺	K+	Na+
1	8:05~10:25	0.076	1.020	0.370	0.16	2.10
2	10:25~11:25	0.040	1.069	0.096	0.07	0.52
3	11:25~12:50	0.024	0.468	0.054	0.05	0.28
4	$12:50 \sim 14:15$	0.027	0.431	0.038	0.07	0.37
5	$14:15 \sim 15:05$	0.030	0.382	0.039	0.05	0.19
6	$15:05 \sim 16:00$	0.023	0.258	0.028	0.05	0.13
7	16:00:16:28	0.031	0.361	0. 037	0.06	0.22
8	16:30~17:35	0.058	1.477	0.142	0.16	0.84
9	17:35~18:40	0.052	0.821	0.078	0.06	0.39
10	18:40~19:50	0. 036	0.830	0.078	0.06	0.22
11	19:50~20:55	0. 020	0.559	0.042	0.07	0.31
12	20:55~21:50	0. 030	0.288	0.048	0.07	0.32
13	$21:50\sim 22:50$	0.036	0.400	0.061	0.11	0.38
14	$22:50 \sim 0:35$	0. 023	0.327	0.028	0.10	0.20
15	$0:35 \sim 2:40$	0. 031	0. 821	0.105	0.12	0.34
16	$2:40\sim 3:00$	0.044	0. 701	0. 080	0.06	0.34

第3表

(単位 ppm)

化 学	成	分	Ca ²⁺	Mg ²⁺	K+	Na+
全国平均 (1958年金)	森に	よる)	0.97	0.39	0.26	1.10
吉祥寺平均	10月 (1	29~30日 1971年)	0.06	0.01	0.02	0.04
(竹内による)	2月 (1	4~5日 1972年)	0.64	0.08	0.08	0.44

第4表

(単位 ppb)

		濃 度 範 囲	平	均
名古屋(1955年	雨 2 5~ 5.5 雪 3.5~12.0	3.	. 6 . 5	
吉祥寺	10月29~30日 (1971)	1.0~27.0	14.	1
(竹内による))2月4~5日 (1972)	20.0~76.0	36.	0

以上 Ca²⁺, Mg²⁺, K⁺, Na⁺ については, 吉祥寺の 降雨は,何れも名古屋の降雨より濃度はひくくなってい る. が, Zn²⁺ 濃度の範囲は, 吉祥寺の降雨が名古屋の 降雨より広く, 平均値は高くなっている.

Ca²⁺, Mg²⁺, K⁺, Na⁺ の発生源が, 主として陸や海 洋であり, Zn²⁺ は HAMMOND (1971) や BERTINE (1971) のいう如く亜鉛プロセス, 化石燃料の燃焼によるものと すれば, 金森・森田の測定から10数年経過した今日の工 業の隆盛と, 化石燃料の消費とを考えあわせると, Zn²⁺

濃度の増加は当然の帰結である.なお矢野(1972)は, 大気中のエーロゾルの測定において, Zn²⁺ が他の成分 に比し,いちぢるしく多いことを指摘している.

3.2 二つの降雨の特徴

何れの降雨についても、Zn²⁺ 濃度をのぞき,他の成 分の平均濃度は、全国平均よりひくいが、時間の経過に ともなう各成分濃度の変動は異なっている。その変動の 状態を図示したものが第1図および第2図である。

これら濃度変動を,降水時の上空に流入した気塊の流 跡線によってみると,第1図は降りはじめに海洋上から の気塊が,高度1,500mはSE,3,000mではSWか ら流入している.そしてのちには,何れの高度も本土上 空を東進してきた気塊に変わっている.

第2図は台湾東方海上に発生した低気圧が東進し,降 雨をもたらしたものである。降りはじめに海洋上の気塊 が高度1,500mにおいてSWから流入している。また なかごろ(採水順序6,7,8)には高度1,500mS, 3,000mSWから海洋上の気塊が流入している。一般的 に陸地上空を通過した気塊よりも,海洋上および工業地 上空を通過した気塊が流入したときに,降水中の成分濃 度が高くなっている。

*天気/ 20. 2.

連続降雨中の Zn²⁺・Ca²⁺・Mg²⁺・K⁺・Na⁺ 濃度の変動とその原因について

89

第5表

(単位 ppm)

	and the second se					
采水 順序	化学成分 採水時刻	Zn ²⁺	Ca ²⁺	Mg ²⁺	K+	Na+
1	30日 31日 17:10~ 9:25	0. 018	0.101	0.019	0.03	0.13
2	9:25~10:30	0.041	0.172	0.085	0.06	0.50
3	10:30~12:10	0.022	0.101	0.023	0.03	0.16
4	12:10~14:15	0.029	0.148	0. 080	0.07	0.60
5	$14:15 \sim 15:15$	0.019	0.099	0.034	0.02	0.22
6	$15:15 \sim 15:57$	0.018	0.079	0.014	0.02	0.06
7	15:57~16:30	0.018	0.077	0.004	0.02	0.06
8	16:30~19:15	0.140	0.580	0.052	0.03	0.12
9	19:15~20:03	0.049	0.231	0.018	0.01	0.02
10	20:03~20:50	0.022	0.228	0.047	0.01	0. 01
11	20:50~21:55	0.008	0.157	0.055	0.01	0.01
12	21:55~22:50	0.008	0.348	0.067	0.01	0.04
13	22:50~23:40	0.007	0. 261	0. 044	0. 01	0. 01
	平 均	0. 031	0. 199	0.042	0.03	0.15

8月30—31日 1971年

採水順序にして6を過ぎる頃から風向は地上および上 空とも北方よりに変わり、気塊が日本海上から本州中部 を通り、吹きこんでいる.

以上を気塊の流跡線によってみると、前者は太平洋上からであり、後者は日本海から本州中部を通ったものである。このことから降水中のイオン濃度をみると、流跡線が南方よりの場合は、Na⁺・K⁺の濃度が高く、北方よりのときに Ca²⁺・Mg²⁺の濃度が高くなっている。

4.2 イオン濃度比と流跡線

つぎの第4図は, Na⁺を基にした各成分比の時間的変 化を表わしたものである.

Time variation of ion cocentration Feb. 4-5 1972

 降水中の Zn²⁺・Ca²⁺・Mg²⁺・K⁺・Na⁺ 濃度 と降水時上空の気塊の流跡線との関係

4.1 イオン濃度の変動と流跡線

1971年8月30~31日の降雨は、台風の通過による降雨 である.この降雨の降りはじめから終りまで、順次採水 したものの測定結果をつぎの第5表にしめす.

 $Ca^{2+} \cdot Mg^{2+} \cdot K^+ \cdot Na^+$ のいずれも全国の平均よりひくいが、 Zn^{2+} は森田の測定よりはるかに高くなっている.

つぎの第3図は、これ等各成分濃度の時間的変化をあ らわしたものである。

図に明らかなように,採水6,7を境にして,前半は Na⁺・K⁺ の濃度が高く,後半は Ca²⁺・Mg²⁺ の濃度が 高くなっている.いまこれら濃度の変動を,地上および 上空の風向から推定した気塊の流跡線との関係において 考察を加える.

第6表は,降水時の地上および上空の風向を示したものである.

採水順序5(採水時刻15時前後)のときまでは,地上 および上空は概して南方よりの風が吹き,太平洋上を大 きく旋回した気塊が流入している.

1973年2月

27

採水順序	地上及び時刻	等圧面高度	地上	850 mb	800 mb	700 mb	600 mb	500 mb	400 mb
ふりはじめ	30日	17時	SSW						
		19	SSE						
		21	SΕ	SΕ	s	s	s		W
		23	Е						
1	31日	I	ΕSΕ						
		3	ΕSΕ	SE	S E	s w	s w	sw	S W
		5	S E						
0		7	Е						
		9	SSE	S	S	s	S		sw
2		11	S E						
4		13	S S W						
5		15	Ν	W	NW	NW	NW	NW	NW
7		17	NNW						
9 10 11 12		19	WNW						
		21	N	Ň	Ν	Ν	NW		W
		23	N						
15 雨やむ	. 1日	1	NNW						
		3	NNW	ΝE	ΝE	NE	NW	NW	NW

第6表

第7表

(単位 ppm)

採水順序	化学成分 化学成分 採水時刻	Zn ²⁺	Ca ²⁺	Mg^{2+}	K+	Na+	雨量/30分
	28日 29日				1	<u> </u>	
1	20:25~ 8:07	0.13	0.75	0.08	0.10	0.67	0.98
2	8:07~8:50	0.08	0.45	0.07	0.20	0.57	0.70
3	8:50~9:25	0.07	0.20	0.02	0.05	0.25	1.74
4	9:25~10:00	0.25	0.20	0. 03	0.05	0.35	1.29
5	10:00~10:40	0.14	0. 25	0.06	0.05	0.46	1.13
6	10:40~11:40	0.18	0.20	0. 03	0.05	0.25	1.00
7	11:40~12:35	0.08	0.15	0. 01	0.01	0.10	1.64
8	12:35~13:35	0.03	0.15	0. 01	0.01	0.07	1.75
9	13:35~14:35	0.02	0. 25	0. 01	0. 01	0.04	2.75
10	14:35~16:50	0.06	0.15	0.01	0. 01	0.04	2.00
11	16:50~21:30	0.06	0. 20	0. 01	0.01	0.21	1.20

28

8月30—31日 1971年

採水順序 6 —13までの各イオン濃度比は、1 — 5 まで にくらべ全般的に大きく、ことに Ca^{2+}/Na^+ , Mg^{2+}/Na^+ は、いちぢるしく大きくなっている. Relationship between ion concentration and rainfall intensity Apr. 28-29 1971

4.3 化学物質の降下量

化学物質の濃度と降水量の積が,その物質の降下量で ある. つぎの第5 図は, Zn²⁺· Ca²⁺· Mg²⁺· K⁺· Na⁺ の降下量の時間的変化を示めしたものである.

K⁺・Na⁺ の降下量は、気塊が南方より流入した場合 に多く、北方より流入した場合はすくない、 Ca^{2+} ・ Mg^{2+} については、南方よりの気塊にすくなく、北方よりの気 塊に多くなっている。これ等のことから、 K^{+} ・Na⁺ の 源は主として海洋に、 Ca^{2+} ・ Mg^{2+} は陸地からであるこ とが推定される。

5. イオン濃度と雨量強度

4月28~29日 (1971) の降雨は,降水中の化学物質濃 度があまり変化していない. いまこの降雨中の Zn²⁺· Ca²⁺· Mg²⁺· K⁺· Na⁺ 濃度と,雨量強度との関係を考 察する.

第7表は,各イオン濃度と雨量強度とを表わしたもの である.

つぎにこれらのうち, K⁺, Na⁺ 濃度と雨量強度との 関係を見ると, 第6図の如くである.

K+, Na+ 濃度は雨量強度が 大きいときに ひ く く な

1973年2月

29

り,雨量強度が小さい場合に高くなっている. このよう な関係は, Zn²⁺, Ca²⁺, Mg²⁺ についても同一である. この関係の成立は,降水時の上空に流入する気塊にふく まれている化学物質を,雨滴が捕捉してくることによる ものと考えられる.

6. むすび

降水中の Zn²⁺, Ca²⁺, Mg²⁺, Na⁺ 濃度のうち, Zn²⁺ 濃度は他の成分にくらべ, いちぢるしく高く なってい る.

また各イオン濃度変動の要因は,降水時の上空に流入 する気塊の流跡線と雨量強度によるものである。

本研究を行なうにあたりご教示いただいた三宅泰雄先 生,気象研究所地球化学研究部の方々,中沢全一氏に心 から感謝の意を表する.

研究の一部は日本気象学会奨励金によったものである.

文 献

- Bertine, K. K. and Goldberc, E. D. 1971: Fossil fuel combustion and the major sedimentary cycle. Science, **173**, 233-235.
- Hammond, W. F. 1971: 大気汚染物質の発生 源, 燃料協会訳, 横川書房.
- 3) 金森暢子, 1962: 学位論文 名古屋大学に提出.
- 4) 三宅泰雄,杉浦吉雄,1952: 合風に伴う雨水に 溶在する化学成分の異常について,海と空, 29,1-5.
- Morita Yoshimi, 1955: Distribution of copper and Zinc in various phases of the earth materials. J. Earth Sci., Nagoya Univ., 3, 33-57.
- 6) 竹内丑雄, 1972:降水中の化学物質濃度の変動 について、地球化学, 5, 1-12.
- 7) 矢野 直,前橋紀恵子,1972:汚染地域の大気 エーロゾル粒子組成と発生源,日本気象学会秋 季大会講演予稿集,p.84.