啓風丸レーダーからみた,冬季日本海上に

発生する点エコー*

佐藤幸夫**

要 旨

冬型の気圧配置が強まって、季節風の卓越する初期から最盛期にかけて、日本海上には対流性の小さな点 状のレーダーエコー群が発生する。これらの点エコー群は、十分な寿命を持って、下層風に流されて、内陸 山沿いを中心に、かなりの降雪をもたらすものと考えられる。またその発生条件としては、下層の気温と海 水温の温度差が、主な原因と推定される。昭和47年1月に実施された啓風丸による日本海定点観測に便乗し て、その時得られた資料を中心に解析を行なった結果、これらの点エコーの発生条件および、その消長が、 海水温分布と密接な関係があること、また、その寿命は、予期していたとおり、かなり長いものであること が確認されたので報告する。

1. はじめに

冬型の気圧配置が強まって、日本海に寒気が浸入し、 季節風が卓越する初期の段階から、冬型の末期にかけ て、冬の日本海のレーダーエコーは、特徴的な変化の 推移を操り返えすことが多い、まず、冬型の初期の段階 においては、海上にランダムな配列の径5km 前後の小 さな点エコー群が発生し、最盛期を過ぎる頃から、パン ド状を呈するようになって、下層の寒気が抜けると、エ コーは消滅する.

この, バンド状エコーに推移した段階で, 平野部に大 雪をもたらすことが多く, これらについては多くの調査 がある.しかし冬型の初期に発生する点エコー群につい ての調査は少なく, またこの段階でも, それが地形効果 との相乗効果であるとしても, 山沿い中心に, 100cmに およぶ日降雪量をもたらすことがしばしばある.

筆者は前に, 冬の レーダーエコーの, この 特徴的な 変化の推移の一過程としての点エコー群を取り上げ, そ の発生条件が, 下層の対流不安定度と密接な関係のある ことを示し, ひいては, 海水温分布がその重要な因子で あると推論した. またその寿命は, 一般にいわれるより は長く, その点エコーは季節風に流されて, 内陸に降雪 をもたらすことを示したが, 今回はその裏付けとして,

- * Convective Cellular Radar Echoes over The Japan Sea in Winter Observed by Keifu-Maru Radar.

日本海上(N 39, E 136)での啓風丸の観測資料に基いて,点エコーの発生条件と海水温との関係や,その寿命等について若干の検討を加えた.

なお、この点エコー群は、弥彦山レーダーでもせいぜ い250 KM,東尋坊レーダーでは200 KM 以内でしか探 知できないが、このことは、それより遠い所ではエコー セルがないのか、あるいは有ってもエコー高度が低いた めに探知できないのか、議論のなされた問題であるが、 昭和46年の啓風丸の日本海定点でのレーダー観測から、 沿岸から400KM の海上で既に降雪現象を伴なう対流性 の点エコーが存在することが確認されている.

2. 点エコーの発生と垂直安定度

前に述べたとおり,冬型の気圧配置が強まって日本海 に寒気が入ると,海上に点エコー群が発生する. 筆者 (1971)は,弥彦山,東尋坊レーダーおよび輪島の高層 資料から,海上の点エコーの発生は,ごく下層の1000~ 850mb 間の対流不安定度に,密接な関係があることを 示した. この関係を第1図に示しておいた.

これによると,その発生条件として,つぎのことがい える.

- (1) 1000~850 mb 層間が,対流不安定または中立で あること.
- (2) 850 mb の気温が低いこと. (T₈₅≤-7°C で出 現率89%, T₈₅≤-9°Cで出現率93%)

ここで、対流不安定度は $-\frac{\partial \theta_e}{\partial p}$ で、各層間の相当温位 (θ_e)の差そのものを指数としてある.また 850~700 mb, 700~500 mb 間の対流不安定度とは、良い関係が

1973年4月

- mb の気温と点エコー発生の有無との関係 (1965~1969 年の弥彦. 東尋坊レーダーお よび輪島高層資料による)
 - ・: 点エコー群の発生有り. ×: 点エコー群 の発生無し.

得られていない.この調査では,輪島の高層資料を用い たが,この場合上層の資料は内陸上空の値を使っている ことになるので,啓風丸の昭46年,47年の海上資料を使 って,同様の方法で,1000~850 mb 間の対流不安定度 と点エコー発生の関係を求めたものが第2図で,海上の 資料からも第1図と全く同じ結果が得られた.

北陸地方の降雪と下層の対流不安定との関係について は、里雪の例を取り上げて、川本(1963)も言及してい るが、第1図、第2図からも判るとおり、下層が対流不

第3図 a

第4図 a

対流活動初期の状態の日本海定点上のラジオゾン デ観測値(エマグラム). ハッチ部分は超断熱層.

安定であることだけでは,点エコー発生の十分条件では なく,下層の気温が低いことが必要である. このこと は,点エコー発生の直接の起因となるものは,海面水温 と下層の気温との温度差,すなわち海面からの顕熱,潜 熱の輸送,このうち蒸発がそのおもなものと考えられ る.

第3図,第4図に点エコーの発生している時のエマグ ラムを示す.第3図a,第4図a共日本海に下層の寒気 が浸入し始めた,点エコー発生の初期の段階のものであ る.

下層では明らかに超断熱層が認められ、その高度は 880mb に及んでいる.これは久保田(1972)が日本海 上の超断熱層の高さは、およそ950mb としたが、それ よりかなり高い例のあることを示している.なお昭和46

▶天気/ 20. 4.

20

啓風丸レーダーからみた,冬季日本海上に発生する点エコー

対流活動最盛期ないし末期の状態の日本海定点上のラジ オゾンデ観測値(エマグラム).ハッチ部分は超断熱層.

年と47年の定点観測期間中で超断熱層が出現した34例について,その上限の平均高度は 967 mb であった.

また第3図b, 第4図bは, 対流活動の最盛期ない し, そろそろ衰弱期に入って, 点エコーの径はやや大き くなり,団塊状を呈するか,またはバンド状配列(クラ ウド・ストリート)を呈する頃のものである.これは初 期に比べて超断熱層は低く,その上層は,ほぼ飽和して おり,また状態曲線のてい減率は,湿潤断熱線に等し

第5図 気温と海面水温の温度差と超断熱層の厚さとの関係

1973年4月

21

く、すでに上下の対流による混合が進行していることを 示している.

この下層の超断熱層の存在は、明らかに気温と海水温 との温度差によるものであり、尾形(1968)も、この温 度差と1000~850mb 間の気温てい減率との間には、極 めて有意な相関があるとしている.いま日本海定点上で の超断熱層の厚さと、気温と海面水温の温度差との関係 を、第5図に示す。ここで気温は海面上 13m の値であ る. また 850 mb の気温を用いても, 全く同じ傾向が得 られる. これによっても, 超断熱層の存在は, 海水温と 気温との差によることは明らかで、かつ、そのおよぶ高 さも,温度差と密接な関係のあることが認められる.

3. 点エコーの発生域と海水温分布

一般に海水温分布の時間変化は小さいと考えられるの で、下層の気温の予測ができれば、下層対流の発生の予 想が可能となるが、しかし海水温分布もその大きな要因 とみなすことができよう.西田(1972)の計算によれ ば、 海面からの顕熱、 潜熱の輸送は、 冬季においては能 登および佐渡沖から、北緯39度、東経137度付近にかけ ての割りに狭い範囲に高い極大値が存在する. これは対 馬暖流域による影響である.また日本海定点を中心とす る径 300 KM の円内の海面水温分布をみても、12°Cか ら5~6°Cまで約6~7°Cの水温差があり、これは決し て無視できる値ではないだろう、したがって、点エコー (対流活動)の発生域や、その消長は、水温分布に大き く左右されているものと考えられる.

まず定点上での、対流性点エコーの位置(ハッチ部分) と、海面水温分布との対応を、第6、7、8 図に示す。こ の図で海面水温分布は、本庁海洋課から提供していただ いた半旬平均の資料を基にし、さらに定点の位置修正や 漂流中の啓風丸自身の水温観測値から補間して得られた ものである. これらの図から判るとおり, 定点の南西海 上から北北東にのびる暖水域 W1, 定点の南方から定点 付近をとおって北に細長くのびる冷水域 C1,および能 登の北方沖から定点の東方を北に向かう暖水域 W2, さ らにその東側の冷水域 C2, という大きな水温分布は 各 半旬共変化はない. 随ってこの半旬毎の海面水温分布 は、その期間を通じで、大勢的な変化はないものと考え て良いであろう、図中の矢印は、レーダー観測と同時刻 の高層観測資料から,700~850mb 間の観測 点の風向 を. また数字は、平均的なエコー頂高度を示したもので ある。さらに参考のために啓風丸レーダーの等ビーム高 度線を各図に円で示してある. これらの図から, 点エコ

第8図

海上の対流性点エコーの出現域と、海面水温分布 との対応、ハッチ部分は点エコーの出現域、実線と 点線は海面水温、矢印は700~850mbの風向、数字 は平均的なエコー頂高度. 円周は啓風丸レーダーの 等ビーム高度線.

▶天気″20.4.

22

-群の風上側の終端域を、その時のエコー頂高度や、等 ビーム高度線図からみて、エコーの発生源と考えれば、 点エコーはまず暖水域で発生し、それが下層の風に流さ れて移動するものとみなしてよいであろう.

図には昭和47年の例のみを示しておいたが,昭和46, 47年の定点観測期間を通じて,点エコーの発生源とみな せる地域が,冷水域上に存在した例は皆無であった.

4. 点エコーの追跡からみた対流活動の消長

前節では,点エコーの発生域が海水温分布と密接な関 係を持つことを述べたが,つぎに点エコーの消長と海水 温分布との関連をみてみたい.

昭和47年1月21日の朝,日本海に閉塞した低気圧があって,8時30分頃,前線が定点付近を通過した。その後,風向はまだ西南西で,その西方にさらに二次前線の存在を思わせるが,寒気は次第に日本海に浸入して,点 エコーが発生し易い場になりつつあった。レーダーエコーは9時では,まだ混合型の面エコーであったが,9時 20分頃から定点の南西約150KM付近の海上に対流性の エコーが発生し始めた。この点エコーの発生域と考えられる地域から,二つの点エコーを選んで,それが消滅するまで追跡したが,それら点エコーの追跡中の10~15分毎の位置を現わしたものが第9図である。なお図中の位置は追跡中の船の漂流による距離補正を施してあり,海 水温分布は前と同様に半旬平均値である。

また, エコー追跡の間, 図中の B のセルについて, エ コー強度と高度を測定し, その時間変化を取り, さらに エコーの存在位置における水温を, 半旬平均海面水温分 布図から求めて記入したものが第10図である. エコー強 度および高度は, 共に二回平均値であり, また強度は距 離 100KM の値に換算して示してある.

第9,10図から明らかなように、点エコーは暖水域で

第9図 点エコー・セルの発生から消滅ま での追跡図

発生(又は急速に発達)して,下層風に流されて,冷水 域で消滅(または,急速に衰弱)していることがうかが える.エコー追跡の初めと終りのエコー高度は,共に6 KM 程度あるので,啓風丸レーダーの等ビーム高度線 が,この付近で2KM~3KMであること等からも,エ コーが近づき,あるいは遠去かることによって,見え始 めたり見えなくなったりするということではなく,その 海域で発生(または発達),消滅(または衰弱)したも のと考える方が妥当であろう.

さらに,エコーの追跡の過程で,エコー強度や高度の 消長が,海水温と,かなり良い対応を示している事は興 味深い.

ここで, ともに興味深いことは, 点エコーの追跡が, 4時間余り, 約 300KM にわたって可能であったという 事実である.

立平(1968)も、冬のセル状の雪エコーが、かなり長 い寿命を持つ例のあることを示しているが、一般には、

第10図 追跡エコー・セルのエコー強度と高度の時間変化と海水温との対応。

1973年4月

対流性点エコーの寿命は,短いとされている.

しかし、冬季海上に発生する点エコーの寿命は長く、 これは常に海面からの熱補給があって、対流が維持され るものと考えられる.このことは、冬の季節風の卓越す る時の日本海側の降雪は、主として海上で発生した点エ コーによるものであるという想定の裏付けとなるもので あろう.

5. むすび

冬季海上に発生する対流性点エコー群については、そ の発生域、発生条件さらに海水温との関係など、従来海 上の十分な資料が得られないままに、推論の域を出ない 部分が多くあったと思われる.

その意味で,啓風丸による,レーダー高層観測を含めた.日本海定点の観測は貴重なものである.今回はこの 観測事実の単なる解析に止まったが,点エコー発生の基本的解明に少しでもつながっていれば幸いである. 最後に,資料の提供に御協力をいただいた. 啓風丸お よび気象庁海洋課の諸兄に厚くお礼申上げる.

献

文

- 川本敏夫,宮沢清治,藤田兼吉.1963.北陸不 連続線による豪雪について、気象研究ノート, 14,56-70.
- 2) 久保田効ほか. 1972, 啓風丸による日本海観測の結果. 測候時報, 39-6, 259-275.
- 3) 西田博雄, 1972, 日本海の海上気象, 熱収支, 気象庁技術報告, 80, 46-62.
- 4)尾形 哲. 1968,日本海北部における冬季の大 気下層状態について、気象庁技術報告. 66, 131-136.
- 5) 佐藤幸夫. 1971, 海上に発生する点エコー群. 北陸地方予報作業指針. 1, 1.2 b-3-1.2 b-11.
- 6) 立平良三. 1968, 雪エコーの発生,移動. 気象 庁技術報告. 66, 320-328.

国際地球電磁気学会・超高層物理学協会

1973 年学術総会のお知らせ

The Second General Scientific Assembly of the International Association of Geomagnetism and Aeronomy (IAGA) が下記のとうり今秋日本で開催されま す。内容は9の Commision と19の Symposium より成 り、地球電磁気学及び超高層物理学全般にわたる幅ひろ い topics と discussion が予定されておりますので関係 各位の御参加を期待します.

期間:1973年9月9日~21日
場所:京都国際会議場
論文 abstract 提出期限:6月10日
会議参加登録期限:7月31日

尚,この会議についての問合せ先は下記のとおりです. (〒 106)東京都港区六本木 7-22-34 日本学術会議,国際地球電磁気学・超高層物理学協 会1973年学術総会組織委員会

(Tel) 403-6291 内線 255

または,

組織委員会幹事 福島 直
(〒113) 東京都文京区弥生 2-11-16
東京大学理学部地球物理研究施設
(Tel) 812-2111 内線 7511