低圧における霜の成長に関する実験*

渡 辺 志 伸**

要 皆

低圧大気中で銅面上に成長する氷晶を数例について観察した。その結果を1気圧の場合と比較すると,成 長は速く,また厚みのある大きい氷晶となり,またある場合には曲面でおおわれていたり,層状の構造を持 つなど,かなり特徴的な性質をもつことが確かめられた。ここではそのうち代表的ないくつかを写真ととも に報告する.

1. はじめに

1気圧において氷晶を成長させる実験に比べ,水蒸気 の拡散を速くできる低圧下での実験は多くは行われてい ない. 低圧での主な実験の一つとして,小林禎作の実験 (1957, 1958, 1967) がある。この実験は、シリンダ内 に張った糸に氷晶を成長させる方法を用いた 実 験 で あ り、雪結晶を生成させるものであった、これに対し今回 の実験は、銅面を一方から冷却することにより熱が一方 向に流れるようにし、氷晶をこの銅面上に成長させ、霜 の生成に関する実験とした.こうすることにより、たと えば絹雲が生成する場合のように、氷晶核鉱物の表面の 一部に生成し始める初期段階を観察する、あるいは成層 圏・中間圏のダスト面に成長する微細な氷晶を観察する 実験とみなすことができる。また初期段階の氷晶は、従 来電子顕微鏡で観察されているが、強い電子線の影響が あるなどの問題があった.この点で本実験は従来の実験 を補なうといえる.

また火星に関する最近の研究によると、その極冠と呼 ばれる部分は炭酸ガスおよび水蒸気の凍結した霜である といわれる. (Sharp et al 1971, Hammond 1973). 観 測では火星は炭酸ガスを主とする気圧 5~10 mb の大気 でおおわれ、極冠で気温は -80° C 以下といわれてい る.本実験はこの火星の霜の基礎研究として、このよう な諸条件のうちまず気圧を似せてみた、液体チッ素を購 入する便がないなどのため温度は、一般の霜の研究の行 われている $-14 \sim -21^{\circ}$ C とし、地球大気中で水蒸気の 霜を成長させた.また火星では霜は火山岩などの表面に

* Experimental Researches on the Growth of Frost at Low Pressure

** S. Watanabe 舞鶴海洋気象合 -----1973年6月11日受理----- 生成すると考えられるが今回は、大部分の実験を冷却の 容易な銅面を用いて行い、一例で雲母板を銅面にはり付 けて行った.

2. 実験装置

第1図に装置全体の構成図を示す.図中央が本体であ り,周囲側面及び下方を発泡スチロールで取り囲み外気 と断熱させている.

観察は、図中矢印と Obs. で示すように、本体に組み 入れてある銅面を上方から微分干渉顕微鏡を 用 い て 行 い、同時に35ミリカメラで撮影する. 微分干渉顕微鏡は 氷晶のような透明で形のはっきりみえにくい物に対し、 その形を観察する場合に有効で、原理的には光源からの 光を2本の平行光線に分け、一方を物体の表面で反射さ せ、これが他方の光と光路差により干渉し明暗ができる のを利用するものである.

銅面の冷却は下方に長さ 30 cm の銅棒を接続し、これを図中 E・G・I と記した液に浸して行う.この液は エチレングリコールに水を加え全量約 10 l として保温 槽に入れ、ドライアイスを加えて冷却しクリーム状になった状態で用いる。銅面の温度調節はこの E・G・I を ジャッキで上下させ、銅棒の液に沈んでいる部分の長さ を変えることで行う.また周囲の壁、すなわち本体の内 壁は冷凍庫で冷やした E・G・II と記す液を循環し、 銅面との温度差を小さく保ち水蒸気の供給が過大になら ないようにする.この液はエチレングリコールに水を加 え粘性を小さくしたもので全量約 8 l であり、実験中、 大部分は冷凍庫内にある。循環パイプは塩化ビニル製で 全長約 2.5 m あり、周囲を外気と断熱させてある.ま た循環速度を一定に保つため、循環ポンプの電源には定 電圧電源を用いている.

温度の測定には、本体に内蔵され自作検定した二組の

1973年8月

第1図 実験装置全体の構成

銅・コンスタンタン熱電対を用いる. このうち一組は銅 面の温度を電圧計で測り,同時に記録する. このため に,水と氷が共存し温度の安定した状態を零点として, 銅・コンスタンタンの接点を周囲と絶縁してこの水中に 保ち, さらに庫内の気温を -5°C 前後に保った冷凍庫 に入れる. もう一組の熱電対は銅面とその周囲の気温と の温度差を測り記録する.

気圧は水銀を用いたU字管に示され、これを望遠顕微 鏡で読み取る.気密を保ち、空気もれによる気圧上昇を 小さくするため後方に真空ガラスジャーを接続し、低圧 となる部分の体積を増す.また、ある気圧になった時点 で空気ぬきをやめ、コックを閉じて真空ポンプとのつな がりを断つようにする. 第2図は本体の側断面図である.本体は旋盤を用いて 製作した.中心棒には銅,側壁部分には黄銅,両者の断 熱材としてはアクリルを用いる.中心棒の上端が霜の生 成する銅面となり,この周囲をテフロンでおおい大気と 断熱する.この銅面の上方に観察窓があり,窓ガラスの 下面までの距離は顕微鏡の焦点内に銅面がくるようにし たため3mmとなっている.中心棒とアクリル,アク リルと外側壁,本体と観察窓のすき間はシリコンゴム及 びニトリルゴム製 O-リングを用いて気密を保つように してある.airと記す空気ぬきのための継ぎ手はハンダ で本体と接続してある.側面左方はハーメチックシール であり,この穴から熱電対を導びき入れ,ハンダで封じ ることで気密が保たれる.また,本体内壁を冷却するた

第2図 本体の概略(側断面)

第3図 熱電対の配線と水供給皿を上方より見る.

め側面下方にはエチレングリコールを循環する空洞があり、図中に E G と示す向きに流れる.

第3図には銅面とその周辺を上方からみた場合の略図 と、銅・コンスタンタンの配置を示す。中央の銅面上に 銅・コンスタンタンの接点をパラフィンで固定する。一 組の他の接点は零点に保ち、もう一組の他の接点は水蒸 気供給皿の近くに保持する。この水蒸気供給皿には、蒸 留水を入れ実験の前に凍らせておき水蒸気を供給する。 皿の深さは約3mm であり、銅面から約2cm 低い位 置にある。空気の減圧は air と記すパイプを通して行う。 観察窓から見られる部分は破線で示す内側のみである。

3. 実験

銅面と本体内壁を冷却するためのエチレングリコール はそれぞれあらかじめ別に冷やしておく.実験の手順は 次の通りである.まず蒸留水を入れ凍らせておいた水蒸 気供給皿を本体内に入れ,観察窓を取り付ける.またシ リコンゴムと O-リングにより本体上部の霜の生成する 部分を気密にし、同時に測壁にエチレングリコール液 (E・G・II)を循環し本体の冷却を始める. エチレングリ コール液 (E・G・I) はドライアイスを加えてクリーム 状に白濁するまでさらに冷却する. この段階では銅の中 心棒はまだ冷却液に浸していないが、0.5~1時間で銅 面の温度は、周囲の冷却に引きずられて氷点下になる. このとき中心棒を下方に接続する.一時銅面の温度はこ の操作により上昇するが、中心棒を E・G・I に浸すこ とで再び下がり、しだいに周囲の温度に接近してゆき, 実験開始からおよそ 1~1.5 時間後に両者の差がなくな る. 真空ポンプによって本体の空気を減圧する操作は, おおむね中心棒を接続したのちの温度差が小さくなりつ つあるときに行う、予定した気圧になるまでの所要時間 は2~4分で、こののちコックを締め真空ポンプをとめ る、記録計に示される温度差がなくなる前後の数分のう ちに、銅面上の不特定の場所に、小さい氷晶が生成す る. 氷晶が生成したことを確認して以後,温度は銅面が 周囲より 0~0.5℃ 低くなるように調節する. またこれ より後、銅面の温度は人為的に変動させる場合のほかは -14°C~-21°C にあり, 実験を通しての変動幅は±1°C を越えていない、気圧は実験を通して、適宜 読み 取っ た. 氷晶の生成以後, 気圧上昇が生じ, 特に真空ガラス ジャーの近傍で温度上昇が大きいとき気圧の上昇が大き く 1.5 mmHg 程度であった.

1回の実験において、5~6時間を経過すると、氷晶 が直径 6mm の銅面をおおいつくす程の大きさとなり、 みかけ上の成長がゆるやかになるので、このときに実験 を打ち切った。

4. 実験結果

本実験で得られた氷晶のうち特徴のある形状をしたも のを示す.低圧下で成長する氷晶はいずれもその成長が 速い.特に生成時の数分は形の変化を伴っており,顕微 鏡で追い切れないものもある.また大部分の氷晶は銅面 上で大きく広がるとともに上方へも成長し厚みのある大 きい氷晶となっている.

形状の特徴的なものとして,

- a. 立方体形をして,明瞭な直線状のエッジを持ち, 平面で囲まれたもの
- b. なめらかな曲面でおおわれ,成長途中であるもの. あるいは曲線のエッジを持つもの
- c. 段状構造をもち,成長して三角柱状になるもの, あるいは屋根形になるもの
- d. ピラミッド形となるもの

1973年8月

41

e. 層状構造をもち,形の不明瞭なもの

などが見られた. これらを写真により示す.

画面には銅面上の大きさにして,縦0.64 mm,横0.96 mm の範囲が写されている. スケールのあるものについ ても,

10目盛=0.085 mm=85 μ

となっており,画面に写されている範囲はすべて同じ大きさになっている.

写真1,2,3は上記 a 項にあたる氷晶である.この氷 晶は生成時に銅面の温度, -14.8° C,その後しだいに上 昇し1時間後に -14.0° C となり,一方気圧は生成時に 13.0 mmHg,1時間後に13.5 mmHgとやや上昇した 実験で成長した氷晶である.

まず写真1は生成時より約7分後のもので数個の立方 体形の氷晶が水平にくいちがいながら連らなっている. エッジは明瞭で、銅面から垂直に立った面がみられ、厚 みのあることがわかる.左方にはピラミッド形の氷晶が 見える.画面の左下から右上にかけて斜めに走っている 同心円状の模様は、旋盤によって製作した際、銅面に付 いた削り跡である.

写真2,3は氷晶の成長を時間的に追っていったもの で、写真2は生成時から25分後、写真3は同じ氷晶の60 分後のものであり、形を変えずに大きくなり一辺がおよ そ0.5 mm に達する.この氷晶は写真1と違って、立方 体形の1個が孤立して成長している.上面の左方はえぐ られたように不規則になっている.

写真4の氷晶は生成時から1分後で、急速に大きくなってゆく途中にある.これは温度-20.0°C、気圧、4.5 mmHgのとき生成を始めた氷晶であり、曲線のエッジを持っており、b項にあたる.またこのあと不規則ではあるが放射状に成長してゆく.

写真5,6は同じくb項にあたる氷晶である.写真5 は生成時から25分後,写真6は同じ氷晶の30分後のもの であり,温度は生成時の,-19.6。Cから30分後に-19.2°Cへと,また気圧は2.3 mmHgから3.5 mmHg へとそれぞれ上昇している.写真5の中央右上に見られ る突起状結晶が大きくなってゆき,写真6に見られるよ うに氷晶の形が変化した.この写真では下方の銅面の模 様が氷晶を通してみえている.

写真7は写真1に似ているがエッジのなす角度が異な っており、区別して c 項とした.また銅面に対して斜め に成長している点でも異なっている.画面で三角形の面 が白く見えるのは.顕微鏡の光が多く反射しているため で、この面が水平に近いことを示している.この氷晶 は、銅面の温度が -20.0° C から -19.5° C になり、ま た気圧は 4.5 mmHg から 6.0 mmHg となるときに成 長してきたものである.この写真は生成時から30分後の ものである.

写真7と類似し、 c 項にあたる氷晶は他にも見られ、 それを写真8.9に示す、写真8は33分後のもの、また 写真9は45分後のもので両者ともに温度は -19.5°C. 気圧は 6.0 mmHg となるときに成長したものである が、それぞれ別々に成長してきた氷晶である、写真8 は、はっきり見にくいと思うが、ピラミッド形の氷晶の 上面にU字形に溝があり、これと平行して三角形のエッ ジが連らなっているのが見られた。これらが成長した場 合、写真9の氷晶のようになることが考えられるが、こ の氷晶はエッジがはっきりしており平面に囲まれて三角 柱状をしているのがわかる.

写真10.11ではほぼ水平に近い方向に主軸がくるよう な成長をした氷晶を示す.写真10の氷晶は,銅面をおお う氷晶から,1個が上方へとび出たように見え,写真11 では多数の氷晶が連らなっており,ややわん曲している のが見られる.これらは,ともに温度, -19.6° Cから -19.0° Cへ,気圧,2.3 mmHgから3.5 mmHgへと いった上昇中で成長している.時間は約1時間を経過し ており,見かけ上の成長は小さい.

写真12は、軸がすこしずつずれながら、その軸方向と 思われる縦方向に連らなった氷晶を示す.この氷晶は雲 母面を用いて成長させたもので、例が小ないが、大気中 の氷晶として、この形状の氷晶は今までに報告されてい ないので、ここに掲げる.この氷晶は、長く伸びて高次 の面に囲まれた氷晶(写真で左上から右下へわたる氷 晶)の上面が変形してこのようになっているのである. 温度は-19.2°Cから-19.6°Cへ、気圧は 3.6 mmHg から 4.0 mmHg へとそれぞれの変動中で、写真は生成 時から45分ほどたったときのものである.

写真13はピラミッド形の代表的なものである. この氷 晶は成長を始めたころには,曲面が囲まれていたが、し だいに写真のように明瞭なエッジを持ってきた. 温度は -18.0°C から -17.0°C へ,気圧は 9.3 mmHg から 10.0 mmHg へとそれぞれわずかに上昇している. 撮影 時は生成始めから80分後である.

写真14は層状の構造を持ち, e 項にあたる も の で あ る. 温度は -14.8°C から -14.0°C へ, 気圧は 13.0 mmHg から 13.5 mmHg へと上昇 して いる. 撮影時

◎天気/ 20. 8.

430

42

写真1 立方体形をした氷晶,生成時から 7分後,-14°C.13 mmHg

写真3 写真2の氷晶の60分後(写真2よ り35分後)

写真5 丸みをもつた氷晶,25分後, -19°C, 3 mmHg

写真7 三角柱状の氷晶,30分後,-19.5°C, 6 mmHg

写真 2 立方体形の氷晶, 25分後, -14°C, 13 mmHg

写真4 生成時ころの氷晶,1分後,-20°C, 4.5 mmHg

写真6 写真5の氷晶の30分後

写真8 三角柱状の氷晶,33分後,-19.5°C, 6 mmHg

1973年8月

写真9 三角柱状の氷晶,45分後,-19.5°C, 6 mmHg

写真11 連らなった三角柱状の氷晶,約1 時間後, -19°C, 3 mmHg

写真13 ピラミッド形の氷晶, 80分後, -17°C, 10 mmHg

写真15 1/5 気圧での氷晶,20分後, -19°C, 146 mmHg

写真10 孤立した三角柱状の柱晶,約1時 間後, -19°C, 3 mmHg

写真12 雲母面での氷晶,45分後,-19.6°C, 4 mmHg

写真14 層状になった氷晶,50分後, -14°C, 13.5 mmHg

写真16 1 気圧での氷晶,70分後, -19°C, 1 気圧

*天気" 20. 8.

は、生成を始めてから50分後である.

低圧との比較のために 1/5 気圧, 1 気圧で成長させた 氷晶を示す.まず写真15は -19.5°C から -19.0°C へ, 気圧は 145 mmHg から 146 mmHg といった状況で成 長した氷晶である.また写真16は空気ぬきをしないで成 長させた氷晶で温度は -19.0°C から -20.5°C へ下が り,再び -19.0°C となっている.いずれの氷晶も扇形 六角板で,大きさが異なっているが,この状態からの成 長はゆるやかであった.またこの氷晶は雪結晶に近いも のである.

低圧では1個の氷晶ができると、その氷晶が大きくな ってゆくが、1気圧の場合には1個の氷晶が成長してい るときに、銅面上で別の氷晶が成長しており、たとえば 六角板と、樹枝状結晶といった二者が成長していること があり、気圧が高いため水蒸気の供給が低下して、水蒸 気圧にむらが生じたためであろう.

5. 考察

i) 生成面の効果

従来氷晶をある面上に生成しようとするとき,その面 がメッキなどで鏡面仕上げされていると,核となる氷晶 が生成しないといわれており,本実験で写真に見られる ような同心円状の細かい溝が銅面に付いていたことは, 氷晶の生成を促がしていたと考えられる.また雲母面に ついて,へキ開面を出す際に付いた傷がわずかにあった が,本実験の例ではまず表面に過冷却の水滴と思われる ものが生じ,これが凍結してのちに氷晶が成長し始めて おり,従来の考えを支持するといえる.

低圧下において成長する氷晶については、厚みを持っ ており、ある程度成長が進んだ場合には生成面の種類の 違いによる差異はなくなると考えられる.また、三角柱 状の氷晶などは下方は銅面でなく別の大きい氷晶である といった場合が多く、生成面の直接の影響はあらわれな いであろう.

ii)温度の効果

本実験では銅面の温度は -14°C から -21°C の範囲 にある.小林禎作(1958)によれば,雪結晶の成長方向 は温度によってきまり,本実験の範囲では,主軸と直角 な方向に成長する場合にあたり,板状になる 性質 を も つ.また水蒸気の過飽和度の違いにより二次的な成長が きまり,氷晶形の違いがあらわれるという.本実験で, 気圧が高い場合には,雪結晶に類似した,扇形六角板と なった.低圧下では,雪結晶とは異なる氷晶形となって いる. 温度の変動は ± 1 °C 以下であり, 氷晶形への影響は 少なく, 層状構造を強化する程度であろうと考えられ る. 銅面と周囲の温度差は 0.5°C 以下に保っているが, 両者相互間のひきずり, 銅面温度の変動などにより, 多 少の変動はさけられない. 水蒸気の供給量は, この温度 差による蒸気圧差を利用して水蒸気を供給するものであ るから, 多少の変動があると考えられる.

iii) 気圧の効果

低圧下では1気圧に比較して,急速な成長をし,大き い氷晶となり,またその成長方向が全球面状であり幅と ともに厚みをもつ,といえる.気圧の上昇は各実験で不 ぞろいであり,生成時から2倍近くになる場合がある. こういった場合,水蒸気の拡散係数は半分になり,水蒸 気の供給量は減るとも考えられるが,1/5気圧に見られ るような成長の仕方に変わる,ということはなく,各実 験に固有な影響があったと考えるほかはない.

6. 残された問題点

本実験は第1段階のため,不備な点,疑問点が残る.ま ず,銅面とそれ以外の霜の生成面との比較考察をしてい ないこと,温度範囲が割合限られておりまた銅面と周囲 との間に相互のひきずり等があること,実験装置周辺の 暖化による不安定な気圧上昇,水蒸気の供給に拡散対流 の方法を用いたが,供給量に差があること,霜の生成す る大気が実験室のものであり,エアゾル等を考慮してい ないこと,顕微鏡の光がスポット的にあたることによる 影響の有無,など本体・装置に関連する問題点のほか, 実験・方法についても,本実験は氷晶の成長を追ったに すぎず定性的であり,氷晶の主軸を決める,あるいは軸 比,成長速度,水蒸気の過飽和度といった定量的な測定 を行っていない点,また温度・気圧の効果についても不 十分ものである.今後,実験装置の改良という問題を含 めこういった問題の考察を試みたい.

あとがき

最後に,本実験は気象大学校の昭和47年度卒業研究の 1つとして行ったものである.本実験の遂行にあたり指 導ねがった大学校の駒林誠教官,荒井哲男教官(現在横 浜地方気象台),岡田芳隆教官,ならびに本体の製作を お願いした気象測器工場の岡正康氏,伊勢成氏ほかの方 々,本体の形状について範をとらせていただいた東京理 科大学の権田武彦講師,気密に関し助言願った名古屋大 学の石坂隆助手,その他の方々に深く感謝します.

文 献

1) Hammond, A.L. 1973: The new Mars;

1973年8月

45

Volcanism, water, and a debate over its history, Science, 179, 463-467.

- Isono, K. and K. Iwai 1969: Growth mode of ice crystals in air at low pressure, Nature, 223, 1149-1150.
- Isono, K. 1958: Mode of growth of ice crystals in air and other gases, Nature, 182, 1221-1222.
- 4) Kobayashi, T. 1957: Experimental researches on the snow crystal habit and growth by means of diffusion cloud chamber, 75 th Anniversary Volume of Jour. Meteor. Soc.

Japan, 38-47.

- Kobayashi, T. 1958: On the habit of snow crystals artificially produced at low pressure, Jour. Meteor. Soc. Japan, 36, 193-208.
- Levi, L. and T. Kobayashi 1967: Ice filaments grown in a gradient of vapour pressure, Jour. Meteor. Soc. Japan, 45, 315-325.
- Sharp, R. P., B. C. Murray, R. B. Leighton, L. A. Soderblom and J. A. Cutts 1971: The surface of Mars; 4 south polar cap, Jour. Geophys. Res., 76, 357-368.

(以下442頁の続き)			
山路自然科学奨学賞	賞牌 副賞 100万円 理・工学	11月30日 学会締切 9 月20日	山路ふみ子自然科学振興財団 〒102 東京都千代田区 3-5
山路自然科学 研究助成金	1件100~200万円 理・工学	天気本号416頁参照	TEL 03-261-0397
秩父宮記念学術賞	賞状,賞牌 賞金5万円 山に関する学術的研究 調査	12月25日	日本学術振興会 〒101 東京都千代田区一つ橋 2-1-2 TEL 03-263-1721
藤原賞	賞状,賞牌 副賞500万円 理・工・農・医学	2 月28日	藤原科学財団 〒104 東京都中央区銀座4-7-5 王子ビル TEL 03-561-7736 03-563-1111
朝日学術奨励金	金額制限なし 人文科学・自然科学	2 月28日	朝日新聞社
毎日学術奨励金	人文科学・自然科学 総額600万円	5 月31日	毎日新聞社事業部「毎日学術奨励 金」係 〒100 東京都千代田区一つ橋 1-1-1 TEL 03-212-0321
偕成学術奨励金	人文科学・自然科学 総額300万円	6 月30日	 借成会 事務局 〒103 東京都中央区日本橋兜町 2-33 借成ビル TEL 03-666-2022 5017
松永賞	褒賞 賞金 100万円 3名以内 理学・工学	6 月30日	松永記念科学振興財団 〒100 東京都千代田区大手町 1−4 電力中央研究所内 TEL 03-201-6601 7034

1004

*天気//20 8.