横井 武長**

要旨

1969年8月から1970年8月の間,中海の海上でレーザ光の水平伝搬の実験を行なった.この実験では光透 過率・気温・湿度・海塩粒子・非吸湿性粒子その他の観測を行なった.観測は52回にわたり,データは多量 であるが,そのうち主として光透過率と海塩粒子の観測結果をまとめた.

観測された光透過率は非吸湿性粒子の観測結果により補正され, 海塩粒子はサンプルごとに Junge 分布 をしているものとして, 平衡相対湿度 80~99% における C の値を計算した. 一方, Junge分布 (Junge, 1955)のモデルをつくり, これによって C に依存する形で透過率を計算し, 観測から得られた C 値と比 較して粒子の平衡相対湿度をきめた. その結果, 周囲の空気の相対湿度と粒子の平衡相対湿度との間には直 線関係が得られ, 平衡相対湿度の方がかなり高くなった.

1. 緒 言

大気中に浮遊する半径約0.5µから0.08µ までの間の 海塩粒子の観測では,直接測定法がないため,光を用い るのが有効とされる (Junge, 1963). 一方 Zuev (1970) は,大気中浮遊物の粒径分布と光の減衰との同時観測の 行われた例の少ないことを指摘している.

海塩粒子の分布が Junge 分布であるとき、インパク ターにより半径約 0.5 μ 以上の巨大粒子を観測すると同 時に光を伝播させればその減衰によって半径 0.5 μ から 0.08 μ までの間の粒子、即ち大粒子の分布を知ることが できる筈である. Junge 分布は、粒子半径を r、個数濃 度を $dN/d\log r$ 、および β 、C を定数として、

$$\frac{dN}{d\log r} = Cr^{-\beta} \tag{1}$$

として表わされる. この場合 C は一つの半径に対する 個数濃度によりきめられる. しかし半径の値は、粒子表 面上の平衡相対湿度によって変化するため、Cはまたこ の平衡相対湿度にもよることになる.

1939年に Wright は相対湿度と大気混濁度 (Opacity) との間の関係について理論的考察を加えたが、その中で 吸湿性粒子は周囲の空気の相対湿度において平衡に達し ているという仮定をおいている. 鳥羽 (1965) も、そ の鉛直分布理論において同様の仮定をおいた.しかしそ の後,茶円(1973)の海洋上での海塩粒子の鉛直分布の 観測結果からは,周囲の相対湿度が 95%以下の場合は 95%において平衡に達しているとすればよりよく観測結 果と一致することが見出された.このように粒子表面上 の平衡相対湿度が周囲の相対湿度と一致していなけれ ば,実際の平衡相対湿度の値を知る必要がある.若しそ れが知られなければ、インパクターできめられる粒子の 滴としての半径も不確定であって,Junge分布の場合, その C も決められないし、光の減衰により大粒子の個 数濃度をきめることもできなくなる.また視程(あるい は大気混濁度)と相対湿度との関係も意味をなさない. このように考えれば粒子表面上での平衡相対湿度を求め ることは、エエロゾル物理あるいは気象光学上重要な意 味をもつことは明らかである.

筆者は1969年8月から1970年8月までの間において, 海上2.26kmの距離にレーザ光を水平に伝送し,その透 過率を測定すると同時に,気温・湿度など気象要素の測 定,更に吸湿性粒子(海塩粒子)および非吸湿性粒子 (主に砂)の採集を行なって,この問題を実験・理論の 両面から解明しようとした.本文では,そのうち光透過 率と海塩粒子の観測について述べる.

観測の方法

2.1 光透過率測定の方法

光透過率測定には、出力 10mW, 波長 0.6328µ, CW のヘリウム・ネオンガスレーザを用いた。第1図(2) に発信系を示す。第1図(b)は受光系で、受光鏡はロ

^{*} The observations of the giant sea-salt particles and the laser-light-transmittances.

^{**} T. Yokoi, 米子工業高等専門学校 -----1974年2月12日受理-----

第1図 レーザ装置(a)と受光装置(b) A:定電圧装置,B:直流電源,C,D:光共振器, E,F:平面鏡,G:太陽電池,H:受光鏡,I: 記録電圧計

径 60cm, 焦点距離 120cm の凹面鏡である. この鏡によって受けられた光は太陽電池により測光される (Yokoi, 1968).

レーザ出力のモニターの方法としては、はじめ洩れ光 束法によった. これは レーザ管の 後方に 洩れ出る出力 と、前方出力との関係を時々測ることにより、必要なと きの出力を洩れ出力からきめる方法である. 洩れ・前方 両出力の関係は、レーザの使用時間によって一定でない ため、実験の後半ではビーム遮断法によった. これは受 光鏡の他に口径 20cm、焦点距離約 150cm の凹面鏡を用 い、両者にレーザ光を照射したときの反射光強度の関係 から出力を求めるものである. 測定法は別稿に詳述され ている (Yokoi, 1974b).

2.2 海塩粒子観測の方法

海塩粒子(以下において粒子という)のサンプリング は鳥羽と田中(1967)によって設計された手動インパク ターと試薬フィルムとを用いて行なった.サンプリング の後、フィルムを現像し,顕微鏡写真を撮影し,読取フ ィルムによって一つ一つの粒子に含まれる海塩の質量を 決定した.この方法では半径1µ以上の巨大粒子が100 %捕集される.

粒子半径 $r(\mu)$ は、海塩質量を $m(10^{-12}$ gm 単位)、 密度 ρ (gm/cm³)、塩分を S(%) として、

$$r = \left(\frac{3 \times 10^3 \cdot m}{4\pi \rho S}\right)^{\frac{1}{3}} \tag{2}$$

で与えられる. また S=35% のときの粒子半径を r_s , 密度を ρ_s , 塩分を S_s とすると

$$\frac{r}{r_{\rm S}} = \left(\frac{\rho_{\rm S}S_{\rm S}}{\rho S}\right)^{\frac{1}{3}} \tag{3}$$

で与えられる (Toba, 1966).

第2図 観測点付近の地図.A, Bは観測地点

中海の場合は岸岡による最近10年間の観測結果 (Kishioka, 1964)を検討した結果, S=14.53%を得た. 従って鳥羽の綜合報告(1966)の Table IV と本文の (1)によって, pm を与えれば r を得ることができ る. この場合,平衡相対湿度は99.3%となっていて,塩 分35%の海の場合の98.2%とは異っている.

実験の場所

第2図に観測点の位置を示す.レーザは安来市側の海 岸(A地点),受光器は米子市側の海岸(B地点)にある 観測小屋内に固定した.A,B2地点間の距離は2.255km で,海面からのビームの高さは平均1.57mであった.ま たビームは海面にほとんど水平に伝搬させた.光透過率 と同時に空気の相対湿度,気温,水温,ビームの高さ・ 径を測定した.また海塩粒子・非吸湿性粒子のサンプリ ングを行なった.これらの観測は両観測点で海へ突き出 た桟橋を作りその先端において,水温以外はビームの高 さにおいて行なった.

4. 観測結果

光透過率および気温・湿度等の 観測は 52 回, 測定は 1,217 回行なった. 巨大粒子の観測は質量・個数を決定 できたもので, 試薬フィルム 156 枚となった. サンプリ ング時における 光透過率, 湿度等を 第5 表に示す. 表 中, I は B 地点における レーザ光強度, I_0 は A 地点を発 信するときのレーザ光強度で, I/I_0 は光透過率である. このときの光の経路の長さを I_0 消衰係数を σ とすると,

$$\frac{I}{\sigma} = e^{-\sigma l} \tag{4}$$

であるが、l=2.255km とすると、 σ は、

$$\sigma = -\left[\frac{\ln I/I_0}{2.255} \times 10^{-5}\right] \quad \text{cm}^{-1} \tag{5}$$

*天気" 21. 10.

第1表 海塩質量 m と平衡相対温度99%における粒子半径 r との関係

log m	0 0.25 0	. 50 0. 75 1.	00 1.25 1.	50 1.75	2.00	2.25 2.50
r	2.92 3.40	3.97 4.49	6.00 7.28	8.82 10	.68 12.9	5 15.68
log m	2.50 2.75	3.00 3.25	3.50 3.75	4.00		
r	18.96 22.	98 27.87 33.	77 40.94 49.	58		

として計算される.

一方, 非吸湿性粒子(主に砂と土壌)の観測結果は, 筆者の他の論文(Yokoi, 1973)に述べられているが, その中において, サンプル中の粒子の直径を顕微鏡接眼 移動測微計を用い,約0.8µ単位で測定した結果から, 非吸湿性粒子による光の減衰係数 σs が計算されてい る. 海塩粒子による光の減衰係数を σp とすると

$$\sigma = \sigma_p + \sigma_S \tag{6}$$

の関係から σ_p を求めれば,非吸湿性粒子の影響をとり 除いた透過率を求めることができる.このようにして光 透過率を補正した結果,補正量の最大値は透過率の単位 (%)で13.3%,その平均値は約2%となった.平均値 の方は, Rayleigh 散乱による減衰とほぼ同じであるが, 全体としてばらつきが大きいために,すべてのデータを 非吸湿性粒子の観測結果を用いて補正した.その結果は 第5表に示す.

サンプリングされた粒子の粒径・個数の読み取りは、 大粒径の部分で正確に行われているが小粒径側では多小 読み落されている。第3図に例として示すように粒径の 小さいところで個数が少なくなっている。粒子の分布は Junge 分布に近似できるものとして、分布の β あるい は Cを観測結果から決めることを目的として読み取っ たため小粒径側の読み落しがみられるのである。

読み取られた海塩質量は 2.2 に述べた方法により平衡 相対湿度99.3%における粒子半径に換算した. 観測され た海塩質量と粒子半径との関係は第1表のようになる. この r の値においては, $d\log r$ の平均値は 0.837 とな る. これを用いて $dN/d\log r$ の値を計算し $dN/d\log r$ vs r を両対数紙上に プロットした. その一つの例が上

第3図 (a), (b) サンプリングされた海塩粒子の分布. 横軸は粒子半径, 縦軸は個数濃度である. F105A, F217BのFは海塩粒子サンプルをあらわす記号,数字はサンプル番号で,A,Bは観測地点をあらわす.

1974年10月

509

平衡相対湿度	r/r _{99.3}
99.3%	1.000
98.0	0. 701
97.0	0.611
95.0	0.526
92.5	0.468
90.0	0.432
85.0	0.388
80.0	0.361
75.0	0.339

第2表 平衡相対湿度と r/r_{99.3}

記の第3図である.次にフィルムごとに半径の平均値 \bar{r} を求め,第1表中の \bar{r} に近い半径を粒子半径の代表値とし,平衡相対湿度99.3%における Junge 分布の β を2.8745 として C の値を(1)から求める.

r に近い半径が代表値として適当かどうかは dN/ d log r vs r の図から一つ一つ検討し, 適さない場合は 他の適当な半径を用いた.以上の結果は第5表に示す.

粒子半径は平衡相対湿度によって変動する. 平衡相対 湿度98.2%(塩分35%)のときの半径 rs に対する粒子 半径の値は鳥羽の綜合報告(1966)に与えられている. 中海の場合は平衡相対湿度は99.3%である. このときの 半径を r99.3 と書いて, 他の r の r99.3 に対する比を計 算すれば第2表のようになる.

 $dN/d \log r$ の値は平衡相対湿度による変化はほとん どないから, $r/r_{99.3} = p$ (定数),また平衡相対湿度 99.³ %における C の値を $C_{99.3}$ とかくと,

$$C = p^{\beta} \cdot \left[\frac{dN}{d \log r} \cdot r_{99.3}^{\beta} \right] = p^{\beta} \cdot C_{99.3} \qquad (7)$$

なる関係を得る.

海から出た直後の粒子の平衡相対湿度が99.3%で、ビームの高さにおけるA、B両地点での空気の相対湿度を 平均したものを RH,粒子の平衡相対湿度を EqRH と 書くと、 $RH \leq 99.3$ に対し

$$RH \leq EqRH \leq 99.3\% \tag{8}$$

なる関係があるものとして、粒子の C 値を計算した結 果を第5表中に示す。

5. Junge 分布のモデル

観測された粒子の平衡相対湿度をきめるために、粒径 分布が Junge 分布であるモデルを考える. 一つのモデ ルごとに平均消衰効率 (Averaged extinction efficiency factor)を計算し, 更に *C* 値のみに 依存する 透過率を 計算すれば, 上述の観測された *C* 値と比較して観測さ れた粒子の平衡相対湿度をきめることができる.

Junge の1955年の論文 あるいは 1963 年の著書に述べ られているモデル分布はデータが充分多いときの平均的 分布であり,大陸型分布 (Continental Aerosols)の場 合は次のような条件によって成立っている.

1) *dN/d* log r の値は, ほぼ 10⁴~10⁻² の範囲 であ る.

2) 粒径はほぼ 0.01~20µ の範囲内にある.(エイト ケン粒子の個数濃度の最大値は, 粒径 0.01~0.1µ の範 囲内にある.)

3) $dN/d\log r$ は $r^{-\beta}$ に比例 する. 比例定数 C は 含有される塩質量と粒子の表面における平衡相対湿度と に依存する. この関係はまた $(dN/d\log m) \cdot m = C'$ (定 数) と考えられる. ただし m は塩質量である.

4) 視程はエイトケン粒子の濃度によらない.

以上の条件によりきめられるモデルをつくるに当り, 3)の定数 C または C' をどのようにきめるかが 問題 になる. β , C および $dN/d\log r$ からきめられる最大・ 最小粒径は、平均散乱効率 F の値に影響するが、モデ ルの C 値としては、最小径の光に対する効果が無視で きる程度になればよい、従って上記 Junge の 著書 (1963)に示されている分布のうち平衡相対湿度95%に おけるものが大体一致するようにきめた.そのためには $C'=3.644 \times 10^{-12}$ となった.

m, r および EqRH の間の関係は,

$$\frac{EqRH}{100} = \left(exp \frac{2\sigma'M}{\rho_{L'}RTr} \right) \cdot \left\{ 1 + \frac{imM}{W\left(\frac{4}{3}\pi r^{3}\rho_{L'} - m\right)} \right\}^{-(\rho_{L}/\rho_{L'})}$$
(9)

と与えられる (Mason, 1957). 飽和の場合は近似式

$$\frac{EqRH}{100} = \left(exp \frac{2\sigma'M}{\rho_L' \boldsymbol{R} Tr} \right) \left\{ 1 - \frac{8.6m}{Wr^3} \right\} \quad (10)$$

を用いることができる. ここに σ' は溶液滴の 表面 張 力, M, W は水, 溶質の分子量, ρ_L , ρ_L' は水, 溶液の 密度, R は Universal gas constant, T は気温, i は Van't Hoff's factor である.

平衡相対湿度:95%,98%,99%,100% について (10)を用いて r と m との関係を計算して β を求め た.結果は第3 表に示す.

第3表 モデル分布の β , C, r_{min} , r_{max} および \bar{r} の値

EpRH	β	C	r min	Y max	r
70%	3	1.8	0.056	5.63	0.084
80	3	2.7	0.064	6.44	0.097
90	3	5.3	0.081	8.10	0.12
95	3	10.6	0.11	10.2	0.15
98	2.9181	23.5	0.13	14.3	0.19
99	2.8745	42.6	0.15	18.3	0. 23
100	2	441.0	0.21	210.0	0. 42

第4表 平衡相対湿度 (EqRH) と平均消衰効率 (F)

EqRH	70%	80	90	95	98	99	100
F	0.7503	0.7520	0.9982	1.2387	1.6285	1.8483	2.1921

平衡相対湿度が95%以下の場合の分布は、95%のとき の分布のうち任意の $dN/d \log r$ を一つきめてそれに対 応する r をきめれば表 2 の $r/r_{99.3}$ の値と(1)の関係 とから C をきめることができる.また(10)を用いて もきめることができる.両方の方法で得られる C の値 には大差はない.次に $dN/d \log r$ の最大値・最小値か ら r の最小値.最大値をきめることができる.平均粒 子半径 \bar{r} は、f(r) = dN/dr および N を 1 cm³ 当りの 粒子数とすると

$$N = CM \int_{r_{min}}^{r_{max}} r^{-\beta-1}$$
$$= C \Big[\frac{M}{\beta} (r_{min}^{-\beta} - r_{max}^{-\beta}) \Big], \qquad (11)$$

$$\overline{r} = \frac{\int_{0}^{\infty} f(r)rdr}{N} = \frac{\int_{r_{min}}^{r_{max}} r^{-\beta}dr}{\int_{r_{min}}^{r_{max}} r^{-\beta-1}dr}$$
$$= \frac{\beta}{\beta-1} \cdot \frac{[r^{-\beta+1}]_{r_{min}}^{r_{max}}}{[r^{-\beta-1}]_{r_{min}}^{r_{max}}}$$
(12)

より計算することができるる. ただし *M*=0.4343 であ る.計算の結果は第3表に示す.

平均消衰効率 F は

$$F = \frac{\alpha(\lambda)}{Q} = \frac{\int_0^\infty \pi r^2 k(q,\xi) f(r) dr}{\int_0^\infty \pi r^2 f(r) dr}$$
(13)

で定義される. ここに $\alpha(\lambda)$ は散乱係数, $k(q, \xi)$ は一 つの粒子の散乱効率, q は相対粒径で, $q=2\pi r/\lambda$, λ は 波長, ξ は屈折率, Q は粒子の 幾何学的総断面積 である. λ=0.6328μ, ξ=1.33 ととると,数値積分;

$$\frac{F=}{\frac{[k(r_{min})r_{min}^{1-\beta}+k(r_{max})r_{max}^{1-\beta}]\frac{dr}{2}+\sum_{x=1}^{n-1}[k(r_{x})r_{x}^{1-\beta}]dr}{[1/(2-\beta)]\cdot[r_{max}^{2-\beta}-r_{min}^{2-\beta}]}}$$
(14)

から F を計算できる. k(r) の値として, Pendorf の表 (Pendorf, 1957) を用いて 数値積分を 行なった結果を 第4表に示す.

光透過率は,

$$I_{\overline{I_0}} = exp(-\pi \bar{r}^2 l F \cdot N)$$

$$= exp\left[\left\{-\pi \bar{r}^2 l F \cdot \frac{M}{\beta}(r_{min}^{-\beta} - r_{max}^{-\beta})\right\}C\right]$$
(15)

から計算できる. ここに l は光の伝送距離で l=2.255km である. 平衡相対湿度をきめれば, F, β , \bar{r} , r_{min} , r_{max} がきまるので I/I_0 を C のみの関数として表わす ことができる. 平衡相対湿度50%~100%, C の値 0.2 ~300 に対する すべての I/I_0 の値を (15) により計算 した.

6. 観測された粒子の平衡相対湿度の決定

観測された粒子による光透過率と C 値とはそれぞれ 第5 表中に示されている.一方, Junge 分布の モデル の C 値による光透過率が計算されているので,両者を 比較することによって観測された粒子の平衡相対湿度を きめることができる.実際の作業としては,周囲の空気 の湿度との関係をともにきめる.平衡相対湿度 99%,

1974年10月

第5表 光透過率の観測値とその補正値,空気の相対湿度,C値および平衡相対湿度の観測値

Sam. No.	Date	Observed $I/I_0(\%)$	Corrected $I/I_0(\%)$	Observed RH(%)	C at 99%EqRH	C at 95%EqRH	C at 90%EqRH	C at 80%EqRH	Type of <i>EqRH</i>
31 B	1970 4. 21	62.5	66.6	74.0	247	40	26	15	h
33 B	"	66.0	69.8	78.9	345	56	35	21	i
34 B	"	67.0	70.3	80.4	210	52	22	13	h
35 B	"	69.1	72.5	80.7	34	6	4	2	с
41 B	4. 25	36.4	37.3	95.7	18				а
46 B	4. 27	59.6	62.9	77.5	227	37	24	14	g
47 B	"	60.8	64.3	77.3	216	35	23	13	g
48 B	"	62.1	65.7	77.0	101	16	10	6	d
49 B	"	59.4	63.0	82.0	54	8	5	3	с
50 B	"	57.5	60.9	83.0	173	30	19		f
51 B	4. 29	63.8	67.0	63.4	54	9	6	4	с
54 B	4. 30	68.3	81.6	73.9	117	19	12	7	h
65A	5. 12	74.4	76.0	57.0	395	64	40	24	i
66 A	"	63.4	64.8	59.0	289	47	30	18	i
67 A	"	72.0	73.8	85.5	250	40	27	16	SS
69 B	"	73.6	75.2	63.1	1460	250	160	98	i
70 B	"	73.3	74.9	60.9	848	137	86	51	i
71 B	"	64.6	66.0	62.6	247	40	26	16	h
72 B	"	71.0	72.8	72.8	181	30	19	11	h
82 A	5. 21	76.8	78.5	44.0	144	23	15	9	h
83 A	"	76.9	79.7	52.4	28	5	3	2	с
84 A	"	69.6	73.2	59.3	21	3	2	1	с
85 A	"	69.1	72.6	72.3	16	3	2	1	с
86 B	"	70.6	72.2	55.5	374	30	40	21	i
87 B	"	79.9	81.7	47.3	115	19	12	7	h
88 B	//	81.5	83.3	44.5	299	28	32	19	i
90 B	"	69.0	72.5	70.5	58	9	6	3	с
100A	7.12	74.8	76.0	81.3	126	20	13	8	g
102A	7.15	73.9	78.1	68.0	199	32	21	13	i
103A	//	76.2	80.6	68.0	190	31	20	12	i
104A	"	68.2	70.4	65.0	68	11	7	4	с
105A	//	73.9	75.1	63.2	144	19	15	9	g
108 B	//	78.4	83.4	82.6	165	27	18	10	i
109 B	"	77.0	81.4	76.3	101	16	11	6	g
110 B	"	74.9	78.7	74.7	62	10	6	4	e
111 B	"	85.8	87.1	75.6	79	13	8	5	h
112A	7.18	84.6	90.7	52.6	276	45	29	17	i
113A	"	80.5	81.2	53.3	68	10	6	4	e
115A	"	85.6	88.2	59.2	113	19	12	7	i
116A	"	85.0	87.4	55.1	82	13	9	5	h
117 B	"	86.3	92 . 6 [.]	56.2	72	11	7	4	i
118 B	"	82.9	86.3	55.5	234	38	24	14	i
119 B	"	75.7	77.2	57.5	183	30	19	11	i

◎天気″21.10.

海塩粒子とレーザー光透過率との観測

Sam. No.	Date	Observed $I/I_0(\%)$	Corrected $I/I_0(\%)$	Observed RH(%)	C at 99%EqRH	C at 95%EqRH	C at 90%EqRH	C at 80%EqRH	Type of <i>EqRH</i>
120 B	7.18	81.9	84.4	54 . 3	309	50	31	18	i
122 B	"	85.0	87.2	50.8	181	30	19	11	i
126A	7. 20	47.7	48.9	71.5	11	2	1	0.6	a
127 A	"	46.1	47.0	70.0	6	1	0.6	0.4	a
131 B	"	50.3	51.5	68.8	16	8	2	1	a
133 B	7. 22	49.4	50.2	89.0	445	73	46	27	SS
134 B	//	44.2	45.2	90.3	255	42	26		f
135 B	7. 2 3	44.5	46.9	88.0	639	104	66	38	SS
136 B	"	45.6	46.0	90.3	675	109	72	40	SS
139 B	"	45.8	46.1	90.8	134	20	13		с
141 B	"	44. 7	45.1	90.0	48	8	5		с
142 A	7. 22	43.5	44.5	92.5	223	33	22		e
143 A	"	37.3	38.2	93.3	173	28			С
148 B	7. 23	61.4	62.5	88.3	126	20	13	-	e
149 B	"	55.6	57.5	90.5	57	8	4		с
150 B	7.24	31.2	32.8	94.0	250	40	_	I	d
151 B	"	31.3	31.5	95.8	99	16	—		с
153 B	"	24.0	24.3	96.0	417	67		—	SS
$154 \mathbf{B}$	"	16.4	16.6	94.7	144	24	<u> </u>		с
157 A	//	30.5	32.1	95.8	75	12	—		с
158A	"	29.9	30.1	94.8	108	19			Ċ
159 A	//	27.4	27.7	97.5	90	13	-	-	С
160A	"	21.6	21.9	96.0	72	12	-	—	с
161 A	"	12.4	12.6	97.5	152	23	-	-	с
163A	7. 25	1.6	1.6	97.5	22				а
164A	"	1.1	1.1	97.5	11		-	-	a
169 B	"	1.1	1.1	96.3	27		-	-	а
170 B	"	0	0	96.8	54				а
172 B	7.26	32.8	33.4	65.3	22	4	2	1	а
$174\mathbf{B}$	"	40.2	40.9	70.0	150	24	16	9	с
176 A	"	38.7	3 9. 7	68.8	13	2	1	0.8	а
178A	"	40.2	40.9	64.3	17	3	2	1	а
179A	"	41.3	42.0	71.0	14	10	6	0.9	a
180A	"	37.7	38.1	73.3	72	12	7	4	С
184 B	7.27	80.6	83.6	71.7	124	20	13	7	h
185 B	"	82.2	85.3	66.5	34	6	3	2	d
186 B	"	81.8	84.9	70.0	174	30	19	11	i
187A	"	86.0	87.3	59.0	9	2	1	0.6	С
189A	"	79.9	82.9	71.5	87	14	9	5	g
190A	"	80.8	83.8	71.3	22	4	2	1	С
191 A	"	81.9	85.0	71.5	7	1	0.7	0.4	b
192 B	7.28	88.1	92.0	60.5	40	6	4	2	g
196 B	"	75.4	75.9	65.8	66	11	7	4	d
197A	"	88.9	92.9	58.5	33	5	3	2	g
198 A	//	88.1	92.0	61.8	80	13	8	5	i 👘

1974年10月

Sam. No.	Date	Observed $I/I_0(\%)$	Corrected $I/I_0(\%)$	Observed RH(%)	C at 99%EqRH	C at 95%EqRH	C at 90%EqRH	C at 80%EqRH	Type of <i>EqRH</i>
199 A	7.28	78.1	80.3	62.5	112	20	12	7	h
200 A	11	77.3	79.6	61.8	16	3	2	1	с
202 B	7.29	69.7	72.1	80.3	6	1	0.7	0.4	a
203 B	"	68.1	70.5	79.5	9	2	1	0.6	а
204 B	"	73.0	75.2	81.0	12	2	1	0.7	b
205 B	"	72.4	74.5	80.5	22	3	2	1	с
207 A	"	72.6	75.1	70.3	4	0.5	0.4	0.2	а
208 A	"	68.1	70.5	74.5	25	4	3	2	с
209 A	"	73.0	75.2	75.3	56	9	6	3	d
211 B	7. 3 0	85.1	86.0	79.5	29	5	3	2	d
213 B	7. 31	83.1	84.4	71.5	55	8	5	3	f
214 B	"	79.3	80.6	79.8	45	7	5	3	d
215 B	"	83.8	85.3	81.0	52	8	5	3	f
216 B	"	86.5	88.1	70.0	107	17	11	6	i
217 B	"	87.1	90.5	75.0	82	13	8	5	i
219 A	7. 30	84.7	85.7	68.6	57	8	6	3	f
220 A	"	84.8	86.0	71.3	68	11	7	4	g
221 A	7. 31	82.7	84.0	76.8	9	1	0.9	0.5	с
222 A	"	80.3	81.7	76.2	6	1	0.6	0.4	а
223 A	"	87.1	90.5	79.5	19	3	2	1	d
231 A	"	83.5	87.9	77.3	8	1	0.9	0.5	с
232 A	8. 1	82.8	84.6	75.8	3	0.2	0.1	0.1	a
233 A	//	82.0	83.1	76.0	7	1	0.7	0.4	b
234 B	8.5	76.8	78.7	80.5	87	14	9	1	f
235 B	, ii	53.7	55.0	86.3	132	22	14	_	d
238 A	"	68.5	70.2	74.3	206	34	21	12	h
240 B	8. 6	73.0	73.6	74.0	100	16	11	6	f
241 B	"	72.9	73.5	71.0	20	3	2	1	с
242 B	"	73.7	83.3	60.8	29	5	3	2	с
243 B	"	74.8	77.4	65.5	275	44	29	18	i
244 A	"	74.6	75.2	60.5	58	9	6	4	d
245 A	"	72.3	75.0	64.5	103	17	11	6	f
246 A	"	73.6	79.7	60.5	125	19	12	7	g
247 A	"	72.6	82.1	56.3	29	5	3	2	с
248 A	"	72.0	74.5	61.5	223	36	23	14	i
249 A	"	73.8	76.3	66.5	101	16	11	6	g
252 B	8. 8	60. 2	61.3	90.5	25	4	3	_	с
254 A	"	56.8	57.8	95.0	199	32	—	_	SS
255 B	"	72.6	74.6	76.5	87	14	9	5	e
256 B	"	73.3	75.0	77.8	72	12	8	4	e
257 B	"	67.2	68.5	86.3	75	12	8		с
258 B	"	53.1	53.9	91.0	151	24	16	_	e
259 A	"	72.6	74.6	78.0	23	4	3	1	с
260 A	"	73. 7	75.4	78.5	8	1	0.9	0.5	а
261 A	"	66.0	67.3	83.5	103	17	11	_	e

24

◎天気// 21. 10.

Sam. No.	Date	Observed $I/I_0(\%)$	Corrected $I/I_0(\%)$	Observed RH(%)	C at 99%EqRH	C at 95%EqRH	C at 90%EqRH	C at 80%EqRH	Type of <i>EqRH</i>
262 A	8. 8	52.7	53.5	85.3	124	20	13		с
265 B	8.12	39.8	40.1	91.0	11	2	1	_	а
271 B	8.19	45.4	45.8	94.8	13	_			a

第1列の Sam. No. はサンプル番号.列中の数字がサンプル番号で、数字の後のA, Bは,採集地点(第2図 参照)をあらわす.第2列は1970年の日付をあらわし、例えば4.21は4月21日である.

95%, 90%, 80%の一つごとにそれぞれ I/I VS RH として第5表のデータ点を C 値とともに プ μ $_{y}$ トし, 更に C の代りにサンプル番号を記入したものをつく る. 一方モデルの C 値による透過率の計算値を同じ大 きさの図に記入して重ね合せる。一致する場合はそのサ ンプル番号の観測時の粒子の平衡相対湿度はきまり,一 致しない場合は上記の99%~80%の四つの計算値とデー タを比較することにより平衡相対湿度の範囲をきめる. このようにしてデータは、a) EqRH>99%, b) EqRH = 99%, c) 99% > EqRH > 95%, d) EqRH =95%, e) 95% > EqRH > 90%, f) EqRH = 90%, g) 90% > EqRH > 80%, h) EqRH = 80%, i) 80%>EqRH の9個の型に分けることができる. このうち c, e, g の三つの型の EqRH はそれぞれの中間点をと って97%, 92.5%, 85%を代表値とする。b, d, f, h はデータと計算値とが丁度一致しているが、この一致は Cの値で ± 1 程度までをとった。このように分けたデー タは計算値と比較再確認してある.分類の結果は第5表 の最右列に示す. この列で SS と書いたものは,海洋型 の分布 (Maritime Aerosol, Junge, 1963) の sea-spray 成分であると推定できるものである。これは大陸型の分 布を仮定すれば、そのデータの平衡相対湿度が、周囲の 空気の相対湿度より低いという結果になることから判断 された

次に平衡相対湿度の各型ごとに、周図の相対湿度の観 測値を平均し、*EqRH vs RH* として第4図に示す、図 中、点線は黒い丸(b~h型のデータ点)による回帰直 線で、次の式により表わされる.

$$\left. \begin{array}{c} EqRH=1.\ 16\ (RH)+4.\ 7\\ R=0.\ 85 \end{array} \right\}$$
(16)

ただし *R* は相関係数である. また *RH*>82.15% に対 する平衡相対湿度の実験値は100%とする.

むすび

1) 平衡相対湿度が99%を超えるもの,即ちa型の分 布にあっては、粒子が海から99.3%の平衡相対湿度でで 1974年10月

第4図 EqRH VS RH

黒丸印は EqRH, RH の代表値, 平均値, 白丸 印は 80% EqRH より低いデータ点で, その RH は 平均値, EqRH は仮に 75%においた. 白三角印は 99% EqRH より高いデータ点で RH は平均値, EqRH は仮に 99.5%においた.

横軸に平行な実線は標準偏差値,斜の点線は黒丸 による回帰直線である.

てきたとき、i)周囲の空気が水蒸気で飽和されている かまたはそれに近い状態で粒子が成長した場合、ii)分 布の β が2.8745より大きい場合、などが考えられる. i型は周囲の空気の相対湿度が80%より低い場合に、 EqRH が80%以下の場合であるが、粒径分布が大陸型 でないときは、EqRH はもっと大きくなる可能性があ る。即ちi型には海洋型の分布の場合が含まれる可能性 があると考えられる.

2) b型からh型までの EqRH と RH との間の関係は (16) で与えられるが、EqRH をきめるための要素は必ずしも RH のみでないこと、分布は必ずしも大陸型でないことなどが 偏差の 大きくなる 原因 であろうし、また82.2% RH 以上において EqRH を100%とするなど詳しい関係を得ることはできないことになる。しかし、データの大体の傾向はつかみ得ているものと考え

516 られる

茶円の海水滴の鉛直分布の観測(1973)の結果から は、空気の相対湿度が95%以下の場合は平衡相対湿度95 %、周囲の空気が95%以上のときはその湿度で平衡に達 しているとして分布理論とよく一致すると報告されてい る.第4図において、b型~f型の*EpRH*の平均値は 約95%であり周囲の空気の*RH*の平均値は76~80%で あるからこの範囲では互に矛盾しない結果になってい る.

現在,粒子に含まれている塩質量をきめる方法は確立 されているので,平衡相対湿度をきめることは粒子の大 きさをきめることになる.筆者は,その決定のための理 論を他の論文 (Yokoi, 1974C)において述べている.

謝 辞

本研究の最初から京都大学理学部山元竜三郎教授に御 指導を賜り,多くの貴重な御助言をいただきました.記 して深く謝意を表します.観測およびその整理には米子 高専卒研生の諸君,特に現在,日新電機(株)の小谷光 氏の御助力を賜りました.また電算機による計算におい ては米子高専山根一典技官の御援助をいただきました. 記して謝意を表します.

文 献

Chaen, M., 1973: 海面のくずれと海面境界過程--海水滴の生成を中心に一. 海洋科学, 5, 318-323.

Junge, C., 1955: The size distribution and aging of natural aerosols as determined from electrical and optical data of the atmosphere., J. Met., **12**, 13-25.

- —, 1963: Air Chemistry and Radioactivity., Academic Press, New York and London, 120 -124.
- Kishioka, T., 1964: 中海と赤潮, 米子市立弓ヶ浜 中学校科学部, 22-24.
- Mason, B. J., 1957: The Physics of Clouds, Oxford at the Clarendon Press., 26-27, 108.
- Pendorf, R.B., 1957: New Tables of Total Mie Scattering Coefficients for Spherical Particles of Real Refractive Indexes $(1.33 \le n < 1.50)$., J. Opt. Soc. Am., 47, 1010-1015.
- Toba, Y., 1956c: On the giant sea-salt particles in the atomsphere II. Theory of the Vertical Distribution in the 10-m Layer over the Ocean., Tellus, **17**, 365-382.
- ——, 1966: 海塩粒子一大気と海洋との相互作用の 1 要素として一,海と空,41,72-118.
- —, and M. Tanaka., 1967: Simple Technique for the measurement of giant sea-salt particles by use of a hand-operated impactor and a chloride reagent film., Spec. Cont., Geoph. Inst., Kyoto Univ., 7., 111-118.
- Yokoi, T., 1968: レーザトランスミッソメータの機 器特性について(1), 米高専研報, **4**, 127-134.
- 1973: 大気中に浮遊する非吸湿性 粒 子 の 観 測,米高専研報,9,93-103.
- —, 1974b: Observation on laser-light-transmittance over the sea. (投稿予定)
- ——, 1974c: A theoretical Study on the laserlight-transmittance observed over the sea. (投 稿予定)