拡散モデルによる大気汚染シミュレーション*

岡本眞一** 塩沢清茂** 大滝 厚***

要 旨

有風時に正規型プルーム拡散式,静穏時に積分型パフ拡散式を使用して,大気汚染のシミュレーションを 行なう. 拡散モデルは長期間の濃度分布を推定するためのものであり,対象期間内の気象条件を層別し,各 条件ごとの濃度を計算する. このモデルにより,京浜地区の SO₂ 濃度を計算し,実測値との比較を行なっ た.

1. まえがき

大気汚染の数式モデルは長期間の濃度分布を計算する 長期モデル (Climatological model) と毎時間の濃度の推 移を計算する短期モデル (Synoptic or Transient model) の2種類に大別される.

本研究では、長期間の拡散シミュレーションを対象と する.この長期モデルでは、濃度の確率分布を推定する ことが重要である.平均濃度のみの計算では、風向別平 均風速を使用する簡略式もあるが、最大濃度や各パーセ ンタイル値の推定には利用できない.これらの推定に は、気象条件をより細く分類して、それぞれの条件ごと の濃度を計算する必要がある.

2. 拡散モデル

濃度計算には一般的な正規型プルーム拡散式を使用す る.

$$C = \frac{Q}{\pi(\sigma_y + \sigma_{yo})\sigma_z u} \exp\left\{-\frac{y^2}{2(\sigma_y + \sigma_{yo})^2}\right\} \exp\left(-\frac{He^2}{2\sigma_z^2}\right)$$
(1)

ここで

C: 濃度

Q:排出強度

- H_e:有効煙突高度
- * Air Quality Simulation by Atmospheric Dispersion Model
- ** S. Okamoto and K. Shiozawa 早稲田大学理 工学部
- *** A. Ootaki 明治大学工学部
 ——1974年11月11日原稿受理——
 ——1975年3月26日改稿受理——

1975年10月

 σ_z :鉛直方向の拡散幅 σ_y :水平方向の拡散幅 σ_{yo} :面源の初期拡散幅 u:風速

静穏時には、プルーム拡散式が使用できないので、パ フ拡散式を積分して求めた近似式により濃度を計算す る. この静穏時の式は瞬間点源からの3次元パフ拡散式 を積分したものである. ここで、拡散幅は $\sigma_y = \alpha t$, $\sigma_z = \gamma t$ として、Turner (1964)の線図を近似したもので ある. この積分された濃度は高煙源の場合でも、煙源か ら数 km の範囲では 2時間程度で定常値に達し、煙源 に隣接する所を除けば、よい推定値を与える(環境庁、 岡山県、1973).

本モデルでは面源からの拡散を計算するので、初期拡 散幅 σ_{yo} に相当する 経過時間を積分の 下限とする. 厳 密には σ_y から計算される経過時間と σ_{π} から計算され る経過時間は一致しないが、ここでは σ_y から求められ る時間をもとに 近似的に 計算する. この結果を次に示 す.

$$C = \frac{2\gamma Q}{(2\pi)^{3/2} (\gamma^2 d^2 + \alpha^2 H_e^2)} \left[\left(\frac{d^2 + \left(\frac{\alpha}{\gamma}\right)^2 H_e^2}{2\sigma_{yo^2}} \right) \right]$$
(2)

ここで

d:リセプターと煙源の距離

対象期間内の気象条件を風向 D, 風速 V, 大気安定 度 S により分類し, それぞれの条件ごとの 発生 頻度 $f(D_i, V_j, S_k)$ を求める. ただし, 安定度は日射量や温

拡散モデルによる大気汚染シミュレーション

第1表 汚染源の分類

- (1) utility
- (2) large industry
- (3) small industry ${\bf I}$
- (4) small industry II
- (5) space heating

第1図 面汚染源の格子間隔

度の鉛直勾配などを使用する厳密なものではなく,昼と 夜,風速などから求める簡単なものである。計算時間の 短縮と計算機のメモリーの節約のために、 σ_{ν} の安定度 は風速のクラス分けと一致させ、 σ_{z} の安定度は排出源 の日負荷変動のクラス分けと一致させる.

2.1 汚染源

汚染源は6つのタイプに分類して、それぞれの日負荷 変動(昼と夜の排出量の比率)を設定する.火力発電所 と根岸磯子地区の大工場を除き、大部分を面源として扱 う、メッシュの間隔は第1図に示すように、川崎、鶴見 の臨海部などで1km とし、その他は排出強度や対象地 域からの距離に応じて2、4、5km とする.メッシュ ごとの煙突高度は大工場(神奈川県の緊急時協力要請工 場)で40mと60m、小中工場で30m、ビル暖房で20mと する.また有効煙突高度推定のための熱排出量は、ビル 暖房で0、工場については、それぞれメッシュに含まれ る工場の業種などから推定して、各メッシュごとの代表 値を設定する.

面源の仮想排出点源位置はメッシュの中央として、両 端での濃度が中心の 1/2 になるように、一辺の 1/2.4 に 相当する 初期拡散幅 σ_{yo} を与える. (Roberts et al. 1969) ただし、1つのメッシュの中に1つの大工場を含 む場合は、大工場のタイプにあたる面源の仮想排出点源 位置はその工場の所在位置とする.大工場は多数の煙突 を有しているので、それに相当する 初期拡散幅 σ_{yo} の 値として、40mを与えることにする.

2.2 大気安定度と拡散幅

拡散幅の 推定には、 Pasquill-Gifford の線図を利用す る. 安定度の 設定には、気象研究所 (1970)、桜 庭 ら (1970)、 McElory and Pooler (1968) などの研究を参 考にして、昼と夜、風速、煙源高度などから求める方法 によるものとする. 水平方向の拡散幅 σ_y は日射量や雲 量から求められる Pasquill の安定度 よりも、風向変動 と密接な関係があり、風向変動のデータがない場合は、

第2表 大気安定度と拡散幅

Trial	σ _y	σ_z
1	$1 < u \leq 3m/s (u = 2m/s) \mathbf{A}$ $3 < u \leq 7m/s (u = 5m/s) \mathbf{B}$ $7 < u \qquad (u = 8m/s) \mathbf{C}$	$\begin{array}{ccc} Ho \geqq 60m & E \\ night & E \\ daytime (clear) & C \\ daytime (cloudy) & D \\ Ho < 60m \end{array}$
2	$1 < u \leq 3m/s (u = 2m/s) A$ $3 < u \leq 6m/s (u = 4m/s) B$ $6 < u \qquad (u = 6m/s) C$	night $(u \leq 3m/s)$ E night $(u > 3m/s)$ D daytime (clear) B daytime (cloudy) C $(2 \times \text{original value})$

(u: wind velocity, Ho: stack height)

(A~F: Pasquill's stability class)

拡散モデルによる大気汚染シミュレーション

第2図 東京タワーの風速プロフィール (1969年2 月1日~3月20日の時刻別平均値)

第3図 SO₂ 等濃度線図 (S, 5 m/s)

風速自身の方がよい推定値を与える. これは高煙源につ いても同様で、富山、姉ヶ崎などの拡散実験の結果から も実証されている。中野(1972)の西淀川拡散計算も σ_yの安定度は風速のみによって決定する方法をとって いるので、これに準じて分類表を作製する、この西淀川 拡散計算では、St. Louis の資料に基づいているので、 Pasquill の安定度と線図が利用できるように変換する.

鉛直方向の拡散幅は都市内では大きく、Pasquill (1970) によれば、平坦地の約2倍程度である。 σz の安 定度は第2表のように設定する. 日中は晴と曇, 高煙源 と低煙源にわけて、B,C,Dの安定度とし、夜間は風速 3m/s 以上の 低煙源を D, その他は E とする. ただ し, σ_z の値は Pasquill-Gifford 図の2倍を与えるので, 安定度が E であっても、Pasquill-Gifford 図の安定度D

第4図 SO₂ 等濃度線図 (SSE, 5 m/s)

第5図 SO₂ 等濃度線図 (S-SSE, 5 m/s)

の σ_z よりやや大きい 程度 で, Turner (1964) のモデ ルとも矛盾しない. 静穏時の 安定度は 環境庁, 岡山県 (1973) のモデルを参考にして, Turner の安定度階級 3と4を使用する.

2.3 風速

風速は高さとともに大きくなり,一般にベキ法則が適 用される. ここで使用する鶴見保健所の風速は2階建の 屋上での測定であるから、高煙突では、風速を補正する 必要がある. 京浜地区では,長期間の上層観測データが 得られないので,東京タワーの観測値よりベキ法則の係 数を推定する。1969年2月1日から3月20日までの時刻 別の風速プロフィールの一部を第2図に示す. このデー タより、ベキ法則の係数は、日中で 0.2、夜間では 0.5 とする.

1975年10月

第6図 鶴見保健所測定点での SO2 濃度計算値と 風向の 関係 (濃度計算は 500m 間隔であ り,最も近い格子点を「●」で,周囲8点 を含めての最大値と最小値を「○」で表わ す.)

2.4 風 向

拡散計算における誤差はいろいろな原因によって生ず るが,最も大きな誤差原因の一つとして,風向の与え方 の誤りがある.

長期平均濃度の地理的分布の計算において、大煙源を 中心に「ヤッデ」の葉を広げたように星型の等濃度線図 が得られることがある.これは水平方向の拡散幅の推定 が小さいためにも生ずるが、風向を16方位に代表させて いることにも原因がある.16方位では、1風向の間に 22.5°の角度差があり、一般的な煙の幅に比べてかなり 大きい.測定の精度から、これ以上に詳細な観測値を得 ることは困難であるので、モデル上での修正が必要とな る.

京浜地区の SO₂ 濃度の計算結果の一例を第3図から 第5図に示す. ここでは、 σ_y , σ_z とも安定度は C, 風 速は5m/s として、500m 間隔の格子点上の濃度を計算 した. 第3図は南風、第4図は南南東の風であり、南と 南南東の中間の場合を第5図に示す. これらの図から、 風向がわずかに変動しても、濃度計算値は大きく変化す ることがわかる.

第6 図に鶴見測定点の風向別 SO₂ 濃度 計算値を示 す. ここでは σ_{y} , σ_{z} とも安定度 C である. 500m x_{y} シュで計算しているので,最も近い格子点での値を「●」 で,測定点を囲む周囲 8 点を含めての最大値と最小値を 「○」で示す. この図から,わずかな距離で,あるいは 風向の差によって,濃度が 2 倍以上に変化することがわ かる.

星型の等濃度線図が生じないような修正方法として, 従来から多く利用されるものに,次の2つがある.一つ は22.5°内の横風方向の汚染質濃度が一定であるとし て,計算する Clarke (1964)のモデルである.また大 志野(1970)のように、 *a*_yの値をやや大きく計算して おくこともできる.しかし、これらの方法では最大濃度 の出現が16方位の中間になる場合、最大値や99パーセン タイル値などの推定には誤差を生じ、計算値がやや低く なることが予想される.高濃度部分の推定精度を向上さ せるために、式(3)に示すように16方位の風向観測値 の頻度を分割して、半分は対象風向の観測値とは11.25° ずれた方向から吹くものとして、32方位の拡散計算を行 なう.

$$\overline{C} = \sum_{S} \sum_{V} \left[\sum_{D(\theta)} \left\{ \frac{f(\theta)}{4} \cdot C\left(\theta - \frac{\pi}{16}\right) + \frac{f(\theta)}{2} \cdot C(\theta) + \frac{f(\theta)}{4} C\left(\theta + \frac{\pi}{16}\right) \right\} \right]$$
(3)

この場合,各気象条件の頻度はあらかじめ32方位に分割して求めておき,各条件別計算値をかけ合わせて平均 濃度を計算する.また各濃度ごとの超過確率も32方位に 分割された条件別発生頻度から求められる.

3. 計算結果および考察

計算対象地域は京浜臨海地域であり, SO2 濃度の測定 点を第7図に示す.計算期間は1969年の1月から3月ま での3か月間である.第8図はこの期間中の鶴見保健所 の風配図である.

まず16方位で風速の補正を行わない場合の計算を行な った. 鶴見測定点での結果を第9図に示す. 平均濃度の 推定では,正規型モデルより, Clarke (1964) モデルの 方がよい計算値を与えるが,22.5°内の一様濃度分布を 仮定しているので,最大濃度の推定精度がよくない(塩 沢ら,1974).

次に風向の細分割とベキ法則による風速の補正を行っ て計算する.ただし地上風の観測値では7m/s以上の頻 度が非常に小さいので,第2表のようにクラス分けを変

第7図 京浜地区の大気汚染 (SO2) 測定点の分布

◎天気″ 22.10.

Daytime Clear (13.6 %)

第8図 鶴見測定点での風配図(1969年1月~3 月)9時~16時を日中,17時~翌日8時を 夜間とする。中央円内の数字はカーム (u≤1m/s)の比率

第9図 鶴見測定点での実測値と計算値の比較 (1969年1月~3月, Trial I)

更する. 風速の分布は強い方へ尾を引いた分布形である ので,各クラスの代表値はクラスの中央値でなく,第2 表のように設定する. この場合の計算結果を第10図に示 す.

算術平均は(3)式で計算される。各測定点での実測 値との比較を第11図,第3表に示す。平均値は糀谷がや や低く計算されている他は,計算値と実測値がよく一致 している。最大濃度は主要煙源に近い大師,神奈川など でやや大きく計算しているが,糀谷,加曽台など多くの 地点で実測値に近い値が得られている。最大濃度は観測 値に含まれる測定誤差も大きくなるので,この拡散シミ

第3表 SO₂ 濃度の実測値と計算値の比較 (Jan.~Mar., 1969)

Monitoring	Observation		Calculation	
station	Ave.	Max.	Ave.	Max.
Kojiya	0.089	0.48	0.051	0.47
Daishi	0.067	0.62	0.094	0.78
Chuo	0.087	0.56	0.085	0.42
Nakahara	0.045	0.59	0.039	0.41
Tsurumi	0.062	0.60	0.083	0.61
Kohoku	0.031	0.64	0.028	0.36
Kanagawa	0.060	0.41	0.047	0.69
Hodogaya	0.050	0.41	0.044	0.51
Kasodai	0.079	0.46	0.082	0.30
Isogo	0.051	0.34	0.068	0.37

(ppm)

第10図 鶴見測定点での実測値と計算値の比較 (1969年1月~3月, Trial II)

ュレーションの結果は比較的によい推定値であると考えられる.

京浜地区は低煙源の寄与率が大きいので、トラッピン グによる高濃度の発生はあまり多くないと考えられる. 今回のシミュレーションの結果からも、大部分の測定点 ではコーニングタイプの拡散式で十分であることがわか る.しかし、中原、港北では主要煙源より10km 程度の 距離があるので、最大濃度の計算値が実測値より低いこ とから、トラッピングの発生が予想される.

港北と中央(川崎)の計算結果を第12図,第13図に示 す.この分布形から,濃度の低い部分の頻度がやや多く 計算されていることがわかる.この傾向は港北など平均

1975年10月

第11図 京浜地区の SO₂ 算術平均濃度の 実測値と 計算値の比較(1969年1月~3月)

第12図 港北測定点での実測値と計算値の比較 (1969年1月3月)

値の低い地点に 見られ, このために 港北, 中原などで は, 平均値の計算値が実測値より低くなっている. これ は周辺部の汚染源のデータが十分でないために生じたも のであり, バックグランドとしての濃度が評価されてい ないためであるとも考えられる.

4. あとがき

長期間の濃度分布を推定するための数式モデルとして は、各気象条件ごとの濃度計算値を重ねて、分布形を求 める方法 がある. この拡散 モデルにより、京浜地区の SO_2 濃度を計算した結果、次の結論が得られた.

(1)長期間の拡散シミュレーションにプルーム拡散 式および積分型パフ拡散式を使用するモデルでは、平均 値のみでなく、最大濃度でも比較的によい推定値が得ら れる.

(2)16方位の風向を モデル上で 細分割することにより,不自然な星型の濃度分布計算値が生ずる問題を解決

第13図 中央(川崎)測定点での実測値と計算値の 比較(1969年1月~3月)

できる.

(3) 濃度計算値はわずかな 地理的な 差によって,大 きく変動する.したがって,拡散計算では,煙源と計算 地点の座標を正しく与える必要がある.

なお本論文の要旨は日本気象学会1974年春季大会にお いて発表した。

文 献

- Clarke, J.F., 1964: A Simple Diffusion Model for Calculating Point Concentrations from Multiple Sources, J. Air Poll. Cont. Assoc., 14, 347-352.
- 環境庁, 岡山県, 1973:岡山県水島工業地域大気汚 染調査報告書.
- 気象研究所応用気象研究部,1970:臨海工業地域の 大気汚染を対象とした大気拡散調査,気象庁技術 報告,72.
- McElroy, J.L. and F. Pooler, Jr., 1968: St. Louis Dispersion Study, Vol. II

中野道夫, 1972:大気汚染寄与率の推定, proc. ISAP, 567-577.

- 大志野章, 1970:広域発生源のコントロールの一方 法,大気汚染研究, 5, 14-19.
- Pasquill, F., 1970: Prediction of Diffusion over an Urban Area-Current Practice and Future Prospects, proc. Symposium on Multiple-Source Urban Diffusion Models, 5-1~5-32.
- Roberts, J. J., E. J. Croke and A.S. Kennedy, 1969: An Urban Atmospheric Dispersion Model, Argonne National Laboratory.
- 桜庭信一,森口実,大志野章,中野道夫,1970:西 大阪地区大気汚染調査(拡散実験),大気汚染研 究,5,112.

▶天気″ 22.10.

14

- 桜庭信一,1972:大気中におけるばい煙の拡散,公 害防止管理者テキスト(日本マメージメントリサ ーチ),2-1~2−22. 塩沢清茂,大滝厚,岡本真一,1974:大気汚染のシ
- ミュレーション、第3回拡散モデルシンポジウム

(資料 1).
Turner, D.B., 1964: A Diffusion Model for an Urban Area, J. Appl. Met., 3, 83-91.
横山長之, 1972: 大気汚染の制御と拡散モデル, 公 害, 7, 125-133.

航空気象月例会のお知らせ

東京航空地方気象台予報課

日時:昭和51年2月下旬場所:東京国際空港ビル内

講演申込:希望者は,講演題目,氏名,勤務先,講演所 要時間を明記の上, 島田守家宛申込下さい. 申込締切:昭和50年12月20日(土)必着 なお開催日時,場所の詳細については決定しだい『天 気"誌上でお知らせします.

(〒 144) 東京都大田区羽田空港 2-3-1

555