簡単なボックスモデルによる大気汚染シミュレーション*

吉門 洋 横山長之**

要旨

非定常な場における大気汚染の広域拡散の状況を再現する、簡単なボックスモデルを試作した.高さ方向 に二層構造をとり、鉛直乱流強度や地上純放射量の実測値を用いて、バラメータ化された上層構造と地上濃 度の関係を表現した. 鹿島地域の比較的狭い範囲を対象とした試計算の結果は良好で、適切な気象データが 与えられれば、より広範囲における広域拡散構造の再現、ないし予測モデルとして利用できる可能性を示し た.

1. はじめに

大気汚染質の排出量と環境濃度の関係を与えるモデル は数多く作られ、既に、大気汚染の制御や工業開発計画 の作成のために活用されている。最も広く利用されてい るガウス型のプルーム(煙流)モデルは、気象条件・排 出条件の定常性の仮定のもとに成立するもので、長期間 の濃度出現頻度分布や長期平均濃度の空間分布の再現や 予測に威力を発揮しているが、時間依存型の短期の濃度 変動予測には適していない. プルームモデルと同様の基 礎に立つパフモデルは、非定常な汚染質の拡散をも扱い 得るように考慮されている。ただし、1個の排出源につ いても追跡すべきパフ(煙塊)の数は多数なので、計算 量はかなり大きくなる、プルーム・パフモデルでは、任 意の地点の環境濃度はすべての排出源から発するプルー ムやパフの寄与を積算して得られる.したがって、大気 汚染に対する個々の排出源の寄与率を求めることができ るのはこれらのモデルの利点である. 実用のプルーム・ パフモデルについては、例えば、環境庁(1975)、横山他 (1975)などに詳述されている.

しかし,近年の大気汚染の問題は,都府県の境を越え た空間スケールでとらえられるようになっており,ま た,夜間海上に流出した汚染質が翌日海風によって吹き

** H. Yoshikado and O. Yokoyama, 公害資源研究 所. -- 1977年11月14日受領一

1978年3月

戻されるといった複雑なメカニズムをも考慮する必要に 迫られている.このような広域拡散の実態をつかむため には,個々の排出源の影響に注目することはさしあたり 必要ではなく,都市や工業地域などからの汚染質の排出 を総体としてとらえ,その流れを時間的に追跡するモデ ルが適当と思われる.このような目的に合致する比較的 厳密なモデルでは,拡散の微分方程式に基づく数値解法 が用いられる.この種のモデルについては,岡本・塩沢

(1977) が多数の文献を挙げて論じている.排出源地区 を通る流跡線に沿った空気塊(セル)の汚染濃度を求め る「移動セル」モデルは,任意の地点の濃度が得られな いし,多数の流跡線をとれば非定常パフモデルと同様 に,風速が小さい場合非常に多くのセルを追跡しなけれ ばならない. 差分化した拡散方程式を三次元格子内で解 く方法も格子数に比例して計算量が大きくなるので,オ キシダントや NO_x などの反応系を扱う場合には,反応 計算を含めて非常に膨大な計算が必要となる.

今回試みたボックスモデルは、基本的には三次元格子 モデルに属するものといえるが、高さ方向の構造を簡略 化し、移流・拡散の概念を単純明快に表わすようにし て、計算時間をも大幅に節約した。高さ方向の詳しい濃 度分布は得られないため、目標を地上濃度にしぼり、実 測地上濃度をよく再現するように鉛直構造をパラメータ 化する.移流・拡散については、いわばシャボン玉のよ うなふるまいを考える。すなわち、時間きざみ *dt* ごと に水平格子のメッシュによってその内部に存在する気塊 を包むシャボン玉が作られる。それらは、*dt* の間だけ 風に流された後に壊れて、新しい位置の複数個のメッシ

^{*} An Air Pollution Diffusion Model Using a Simple Box Method.

⁻¹⁹⁷⁸年1月31日受理一

ュに運んで来た空気を配分する. 同時に, メッシュは各 シャボン玉からの寄与を集めて次の *dt* 間に働くシャボ ン玉を作る. 排出源が存在するメッシュのシャボン玉に は汚染質が吹き込まれる. このような過程を繰り返すこ とによって, 汚染質の広域拡散を表現する.

2. モデルの構成

汚染予測の対象地域を,一定間隔の格子で区分する. 格子間隔 *dx* は,地域全体の大きさとの対比や排出源分 布との関係を考慮して1~数km 程度を選ぶ.区分され たボックスは,高さ方向には第1図に示すような二層構 造とする.下層は,いわば接地層で,地上および低排出 源の影響を直接に受けるとともに,上層との間に汚染質 の交換過程をもつ.下層の計算濃度が,その区画におけ る地上濃度予測値となる.上層は,高排出源の影響を直 接受ける層であって,その厚さは必ずしも気象学的な実 体のあるものでなくてもよい.むしろ,上層の厚さを変 化させることにより,下層への影響を適当に調節するこ とができる.したがって,上空の汚染レベルや気象要素 をパラメータ化してここに代表させると考える方がよい.

排出源ボックスでは、排出源の高さによって下層と上層に排出量をふり分ける。排出源高さとしては、計算可能なら有効高さを用いるべきであろう。下層または上層の単位時間排出量を Q, 層の厚さを H, 拡散計算の時間きざみを Δt とすると、このボックスには、 Δt ごとに $Q\Delta t/{(\Delta x)^2 \cdot H}$ だけ濃度増加が与えられる。

排出源ボックスに与えられた汚染質は、広い意味の拡 散によって周囲のボックスに再配分されていく、その過 程は次の3段階に分けて考えることができる。

(i)層の厚さ変化によるボックス内の濃度変化

日中の混合層の発達、すなわち、リッドの上昇などの

状況を *H* の増大として与えるなら,これによる濃度 *C* の変化は,

$$C_i H_i = C_f H_f \tag{1}$$

で与えられる.ただし添字 i は変化前, f は変化後を表わす.逆に, H が減少する場合を考えるならば, H の 減少分の汚染質は系外に放棄されたものとして,

$$C_i = C_f \tag{2}$$

としなければならない.具体的な層厚の変動の与え方については (iv) で述べる.

(ii) 上下両層間の交換

鉛直方向の拡散は、風の乱流強度に依存する上下両層 間の交換として与える. ボックスの上下両層の境界面の 半分で ω' ,残りの半分で $-\omega'$ の鉛直流があるとき,こ れによって運ばれる汚染質の鉛直フラックスは、 $\omega'(C_1 - C_2)/2$ である. ただし、添字1は下層、2は上層を表わ す. したがって、下層の濃度 C_1 は δt 時間で、

$$\frac{C_1 H_1 - \omega' (C_1 - C_2) \delta t/2}{H_1}$$

となる. すなわち,

$$\frac{\delta C_1}{\delta t} = -\frac{\omega'}{2H_1} (C_1 - C_2) \tag{3}$$

同様に, 上層については,

$$\frac{\delta C_2}{\delta t} = \frac{\omega'}{2H_2} (C_1 - C_2) \tag{4}$$

式(3)と(4)の差をとり、t=0から t=4t まで積 分すると、

$$(C_1 - C_2)_{t=jt} = (C_1 - C_2)_{t=0} \exp\left\{-\frac{\omega'}{2} \left(\frac{1}{H_1} + \frac{1}{H_2}\right) \Delta t\right\}$$
(5)

一方,汚染質の総量は変化しないので,

$$(C_1H_1 + C_2H_2)_{t=dt} = (C_1H_1 + C_2H_2)_{t=0}$$
(6)

式(5)と(6)から,

$$C_{1,4t} = \frac{\sum + \varDelta C \cdot H_2}{H_1 + H_2}$$

$$C_{2,4t} = \frac{\sum -\Delta C \cdot H_1}{H_1 + H_2}$$

ただし,簡単のため,式(5)と(6)の右辺をそれぞ れ *4C*,∑ で示した.

鉛直方向の拡散によるフラックス Fは、拡散係数 K_z を用いて、

▶天気″25.3.

$$F = -K_z \frac{C_2 - C_1}{\varDelta z}$$

のように表わされることが多い. これを上出の定式と比 較すると, ω' が K_z/Az に対応していることがわかる. 拡散理論によれば, $K_z = \sigma_\omega^2 \tau$ (σ_ω は鉛直乱れの標準偏 差, τ は乱れの自己相関関数の形によって決まる時間ス ケール)という形に書けるので,

 $\omega' \sim \frac{\sigma_{\omega}^2 \tau}{\Delta z}$

高さ方向に乱れが一様な場合はこれでよいが、一様でない場合には、上下両層の境界面付近の乱れに注目すべきであろう.一方、濃度分布については、本モデルではボックス内の濃度を一様と仮定するため、両層の厚さから機械的に決まる $dz \ge C_1$, C_2 による表現 $(C_2-C_1)/dz$ をそのまま境界面における濃度傾度 $(\partial C/\partial z)i$ とみなすことには問題がある。例えば、上下境界面高度より低い逆転層によるいぶし型高濃度汚染の場合、 $(\partial C/\partial z)i$ は $(C_2-C_1)/dz$ とは無関係に小さくなる可能性もある.したがって、ここでは、第一次近似としてごく単純に、 ω' を実測の σ_ω に比例するものとし、その比例係数を実験的に選ぶことにした。ただし、この比例係数も一定値ではなく、接地逆転の出現状況などを考慮したパラメータとする必要があろう。これについては (iv)で触れる.

(iii) 移流と水平拡散

各ボックスは、風速の水平2成分(u,v) によって流 され、その中心位置は、 Δt 間に($u\Delta t, v\Delta t$) だけ移動す る.また、移動中のボックスからは、汚染質が水平拡散 によって四周に流出する.あるボックスの一側面から隣 接するボックスへ拡散する汚染質のフラックスをu'C と 表わすなら、元のボックスに含まれていた汚染質は、微 小時間 Δt 後には元のボックスの一辺を $2u'\Delta t$ だけ拡

張した枠の中に一様に分布すると見なしてよい であろう. これらの変化の概念を第2図に示す. u'をいかにして与えるかは工夫を要するところである.若干の演算によれば, u'と水平拡散係数 Kの関係は,

$$u' = u_* \left\{ \frac{u_*}{(u_*^2 - K/\Delta t)^{1/2}} - 1 \right\}$$

ただし、 $u_* = \Delta x / 2 \Delta t$ である. 拡散係数を与え、このような関係を用いてモデル中の拡散量を与えることもできる.

しかし、差分型モデルにおいては、計算上あらわれる 擬似拡散の問題が物理的な拡散過程の定式化を無益にす るほど大きい.物理的な水平拡散がないと仮定しても、 第3図(a)のような移流があれば最も大きな擬似拡散 が起こり、最初左下のボックスに含まれていた汚染質は *At*後には四つのボックスに均等に分散される.逆に、 第3図(b)のような移流は全く擬似拡散を起こさな い.このように、擬似拡散の強さは風向風速によって変 化する.

擬似拡散を除去することは困難であるが、特に、風向 によって擬似拡散の強さが変化する点は不都合であると 思われる、そこで、移流による擬似拡散の他に人為的な 拡散を与え、この強さを風向によって調節することによ り、総合的な拡散の強さが一定風速のもとでは風向によ らず一定になるようにした. この人為的な拡散として, 上述の物理的な拡散の考え方を利用した、すなわち、現 実の物理的な拡散を再現することは目標からはずし、u¹ を人為的に調節して与えるようにした. 当然, u'は風向 が格子の方向に一致するとき最大にする必要があり、そ れらが45度の角をなすときはゼロでよい.風向風速の関 数としてのu'の実験式は、定常状態の仮定のもとに求め た. 一例として、 $\Delta x = 2$ km, $\Delta t = 3$ 分, 風速1m/s のと き、煙源ボックスからの風下距離に応じた濃度分布の計 算結果を第4図に示す. ここからわかるように, この風 速では風向A=45度の場合の擬似拡散と同等の拡散効果 を与えるために、A=0 度のときにはu'=0.35m/s を与 えるようにした、これは、およそ $K=640 \text{m}^2/\text{s}$ に相当す

1978年3月

C: 濃度(任意の単位)

x: 排出源ボックス中心からの風下距離

る. 必要な u' は, 風速とともに大きくなり, 8m/s で は, u'=3.08 m/s (K=3260 m²/s) であった. このよう な方法を用いても移流による擬似拡散と異なり, u'によ る拡散は風上側にも起こり得るなど, 拡散の風向依存性 を十分には消去できない.

ある時刻に各ボックスに含まれる汚染質は、 Δt の間

にそれぞれ(i)~(iii)の過程を経て新しい位置の複数 個のボックスに面積に応じて寄与する. *dt* 後の各ボッ クスの濃度は,現在のすべてのボックスからの寄与量の 総和と新たな排出量によって決まる.風向風速と鉛直乱 流強度,層厚の変化,排出量のデータを与えながら(i) ~(iii)の手続きを繰り返すことにって,各ボックスの濃 度変動を予測できる.

(iv) 混合層と接地逆転層のモデル化

晴れた日中は、日射による地表面の加熱量に応じて混 合層が発達する(例えば、蒲生他、1976 参照). 混 合 層 が発達することは、汚染質の拡散する空間の拡大を意味 するので、これをボックスの厚さの変動としてモデル化 する. 日射量または日中の純放射量 R(ly/min)のうち、 有効に大気に伝えられる比率をaとし、この気温上昇に よって、温位増加率 $\Gamma(deg/m)$ の上部安定層が中立成層 の混合層に飲み込まれていくとすれば、混合層厚さ H_m の増加率は、

$$\frac{dH_m}{dt} = \frac{aR}{\rho C_p \Gamma H_m} \tag{7}$$

となる.本モデルでは,a=0.25, $\Gamma=0.005 \text{deg/m}$,日出 時 $H_m=200 \text{m}$ と仮定し,式(7)を積分して H_m を求 める.ボックスの下層 H_1 は200mで一定とし,上層 H_2 は200mより混合層上端 H_m までとする.ここに用いた a, Γ の値は実測データに基づくものではないが,結果 として,式(7)から得られる H_m は1100m程度に達

第5図 (a)純放射量・層の厚さの変動と、(b) σω有効率 b の変動のモデル。 純放射量は正から負に変わる夕刻から積算を始める。

212

*天気″25.3.

し,通常観測される混合層高さに近い.式(7)には移 流による熱収支が考慮されていないので、海風の吹き込 む海岸地域などでは完全には成立しない。 海風が陸上へ 進入するときに海岸線から発達する内部境界 層の発達 は、(7)式において $t \in x/u$ に置き換えれば同様に 表現できる. ただし, x は海岸からの風下距離, u は代 表風速である.大きい x で十分発達した内部境界層は内 陸の混合層と同等と考えられるが, x が数 km 以内では 内部境界層の厚さを別途見積もる方がよいであろう。付 言すれば,排出源の近傍についても,汚染質が直ちに混 合層全体に均等に拡散されるわけではないので、モデル において混合層高さを与えることは不合理であろう、し かし、元来混合層高さを正確に推定することよりも、拡 散空間の日変化をパラメータ的にモデルに組み込むこと に式(7)を用いた主眼があり、モデルの高さの地域差 はここでは考慮しないことにした.

一方,晴れた夜間は,地表面からの長波放射によって 接地逆転層が発達する.それは,上層と地上の汚染質の 交換が抑えられることを意味する.しかし,モデルにお いては、逆転層外の上下境界面付近の実測乱れ σ_{ω} から 計算される交換量が上層の影響を直接的に地上濃度へも 与えることになる.そこで、 $\omega' = b\sigma_{\omega}$ とおき、日中は、 一応 b=1 と仮定し、夜間は、純放射量が負のときその 積算値 -SRに応じて b=0.1 まで削減することとす る.0.1 という値は、モデルのテストによって経験的に 選んだものである.翌朝の日出後、-SRが再び0に戻 ったときbも1に戻る.また、それと同時に、夜間一定 だった上層の厚さを、新しい混合層高さに合わせること にする.これらの模様を第5図に示す.

3. 入力データと試計算

3-1 対象地域と格子設定

試計算は、第6図に示す鹿島地域における硫黄酸化物 (SO₂)汚染を対象として行なった.同地域は、主要な排 出源が限られた区画に集中している一方、環境濃度測定 局がかなり密に設置されており、モデルの検証には好適 である.格子間隔は、dx=2 km とし、第7図に示すよ うに、海岸線に沿って10個、海岸線から内陸に向かって 5個、計50個のボックスを想定した.このモデル領域

第6図 鹿島地域、長方形の枠で囲んだ部分がモデル領域である。

1978年3月

簡単なボックスモデルによる大気汚染シミュレーション

第7図 モデル領域内の格子設定.二重枠のボックスが排出源,×印が風・乱流測定地点, 番号付の丸印が環境濃度測定局,純放射量は②で測定された.

は,現モデルの主目的である広域拡散の場としては狭い が,十分な広域の気象・実測濃度データが与えられない 以上,今回のテストの目標をこの程度の空間スケールの 拡散の再現性にしぼってもよいであろう.

3-2 対象期間

データのそろっている、1976年暖候期から好天が5日 程度続いた期間を求めたところ、二、三の例が得られた が、そのうち、とりあえず5月7日~10日を選んだ。こ の期間の推定排出量と実測気象データをモデルに入力し て、各ボックスの濃度を連続計算し、下層における濃度 変動を、各ボックス内の測定局における実測値と比較し た。この期間の毎時平均風速は、10m/s を越える場合も あったので、ボックスサイズとの関係から、 $\Delta t = 3$ 分と した。ただし、 $\Delta t = 6$ 分とした場合も目立った不合理は 起こらなかった。

3-3 データ

排出量,気象,環境濃度のデータは,(財)機械振興 協会(1977)の APMS 開発作業によって得られたもの を再整理して用いた.SO₂排出量は,各排出源の毎時推 定量が与えられているので,これらをボックスごとに集 計し,毎正時より1時間の間一定と仮定して用いた.排 出源はすべて高煙突であり,有効高さは,排ガス量等に もよるが通常は200mを越すので,すべてボックス上層 に与えた.移動源や群小排出源の影響は無視した.排出 源となるボックスは5個で,そのうち2個に総排出量の 85~90パーセントが集中している.

風・乱流測定は、高煙突の2高度3方向に設置した3 成分超音波風速計によるもので、下層ボックスには10m、 上層ボックスには 222m 高度の風向風速を,また,両層 間の交換量に関与する σ_{ω} は 222m 高度の実測値を,す べてのボックスに一様に与えた.これらは,毎正時の値 として入力するが,1時間の状態を代表するために,あ えて1時間平均値を用い,正時以外の値はベクトル内挿 によった.

純放射量は、地上に設置した示差輻射計による測定値 を利用し、これも Δt ごとに内挿した.

SO₂環境濃度は,導電率法による毎正時までの1時間 の積算平均値であるが,これを正時の値として計算値と 比較する.

4. 結果

地上濃度分布の実測と計算値の比較の一例を,第8図 に示す.実測濃度は、測定局によっては排出源区域の風 上側にあたるときも系統的に高濃度を示す場合もあり、 単純な等値線を描くことは難しい.日中は、一般に、排 出源区域近傍から領域の西辺(図の下方)に向かう帯状 の高濃度域が現われるが、図のように、二つに分離した 高濃度域が認められる場合もある.これに対して、モデ ル計算では上層に排出された SO_2 が連続的に下層へ搬 入されるので、排出量の極端な変動がない限り、高濃度 域は一つの帯状に現われる.しかし、全般的に見て、濃 度値および高濃度域の広がりはよく再現されているとい えよう.なお、計算ではボックス平均濃度が得られるの で、第8図には、その分布を適当にまとめて試みに等値 線を入れた.また、計算値には、バックグラウンド濃度 を一律に10ppbとして、計算後これを加算してある.

鹿島地域では、SO₂高濃度の出現しやすい暖候期の日

▶天気″ 25. 3.

第8図 地上濃度分布の実測(上)・計算(下)比較例.計算値にはバックグラウンド濃度 10 ppb を加算.

中,海風が北寄りに吹き始め,やがて,東寄りから午後 には南へと風向が変化することが多い(吉門,1976).そ こで,順次排出源区域の風下側に当たる南,西,北方 のボックスを拾い,それらのモデル計算濃度と,各ボッ クス内に位置する測定局の実測濃度の変動を全4日間に わたって比較したのが,第9図,第10図である.実測で は,風向変化による濃度ピーク時間帯のずれが各日とも 類似したバターンで認められる.このことは,計算結果 にもほぼ再現されている.濃度ピーク時の濃度値は,よ く一致している場合も多いが,実測値の大きなピークに は追随できない傾向が目立つ.ピークの値そのものは層 厚の与え方いかんで調節できるものであるから,計算値 が一様に実測値より低いのであれば修正は容易であろ う.しかし,第9図,第10図によると,排出源区域の北 西方にあたるボックスの計算濃度が特に低すぎるようで

ある. なお, ここでもバックグラウンド濃度を10ppb と 仮定したことはほぼ適当であったといえよう.

5. 考察と結語

現モデルによる濃度計算結果は、空間分布においても 時間変化の点においても実測との対応が全般に良好で、 単純な概念的モデル構造を用いながら、大気汚染の広域 拡散の概観を示し得ていると思われる.ただ、広域拡散 モデルの対象としては、領域を狭く限ったために、結果 の検証も微細構造にとらわれざるを得なくなり、そのよ うな観点から検討するとモデルの不十分さが目につく. 例えば、排出源区域に近い測定局7では、第8図にも46 ppbの実測濃度が現われているが、このような地点は特 定排出源の影響を強く受ける場合がある.排出源ボック スを面源として扱う現モデルでは、その状況は当然正確 に再現できないであろう.したがって、このような排出

1978年3月

第9図 5月7日~8日の地上濃度変動の実測(鎮線)・計算(実線)比較 計算値には一律 10 ppb のバックグラウンド濃度を加算。

源近傍は、シミュレーションの目標からはずさざるを得 ない.その意味で、第9図、第10図には比較的排出源か ら遠いボックスと測定局を選んだ.

しかし、ここにおいてさえ、測定局22と29の実測値の 差に端的に見られるように、同じボックス内でも濃度に かなりのばらつきがあるのが実情である. すなわち、た またまある地点で測定された濃度がそのボックスを代表 するものであるとは限らない.

そこで、以下に測定局の代表性は満たされているもの と仮定して議論を進めると、第9図、第10図における計 算値は、濃度ピークの時間帯をほぼ再現しているとはい え,濃度変動の形の細部までは表現できていない.この 点は、ここに触れなかった中間的試算において、dt, H_1 , H_2 , u', などを常識的な範囲で変化させても改善されな かった.全体的な濃度レベルは、層厚を変えることなど で調節できるが、変動の細部は、気象データを変えない 限り大きく修正することは困難である.1時間値の内挿 によらず、dt ごとの実測気象データを入力することが できれば結果は改善されよう.

現モデルでは、全領域で一様と仮定した気象データの 空間的代表性にも問題があるが、その点では領域が狭い ことは有利である. 鹿島地域は利根川や北浦・霞ヶ浦の

▶天気∥ 25.3.

第10図 第9図に同じ. ただし5月9日~10日.

水系を背後にひかえているために海風域の進入が遅く, 正午前後の長時間にわたって2風系の収束域となりやす い.一例として,海岸部の測定局18と内陸水系に面した 測定局28の毎時地上風データによって,明瞭な海風(東 風)の吹き始める時刻を求めてみると,5月7日は2時 間,9日は0時間,10日は5時間の差があった.なお, 8日は前夜から全域で東寄りであった.モデルでは,こ のような時間差を考慮していないにもかかわらず,その ための目立った不合理は起こっていない.10日の場合, 内陸の7-d や 5-d のボックスで実測より早く高濃度 が現われていることがこの問題に関係するように思われ るが,試算によれば,地上風の不一様性を考慮するだけ では結果は改善されなかった.この時間帯については, 別の何らかの気象条件が作用していたものと考えざるを 得ない.

より詳細なデータまたは適当な推定式が与えられれ ば、それらを現モデルに組み込んでより複雑化・精密化 することは容易である.ボックスごとに異なる風向風速 を与え、収束・発散に見合った鉛直流を考慮に入れた修 正モデルが期待できよう.しかしその場合、上層風のデ ータが得にくいため適切な推定値を与えることに問題が あり、現在のところ良い結果は得られていない.限られ た実測データからモデル領域全体の風の場を正確に推定 する方法,さらに将来は、領域内の気象条件全般を予測

1978年3月

218

できる気象モデルが確立されれば、ここに述べたような 時間依存型の短期汚染予測モデルは大いに力を発揮でき るであろう、しかしまた、現状においても、与えられた 条件下での種々の汚染質のふるまいを知るうえで現モデ ルの利用範囲は広いと思われる.

岡本真一, 塩沢清茂, 1977: 拡散モデルと大気汚染 シミュレーション、天気、24、2~25.

- 環境庁,1975:総量規制マニュアル,公害研究対策 センター
- 機械振興協会、1977:大気汚染予測制御 システム (APMS) 開発報告書.
- 蒲生 稔,森 俊秀,横山長之,1976:逆転層底部 高度の日変化観測,公害,11,231~246.
- 横山長之,北林興二,足立芳寛,1975:環境アセス メント手法入門,オーム社,
- 吉門 洋, 1976: 鹿島灘系海風の構造, 天気, 23, 88~93.

───── 支部だより────── 昭和52年度 日本気象学会 九州支部 講演会 開催

九州支部

昭和52年度の日本気象学会九州支部講演会を,2月8 日、福岡管区気象台で開催した。この会は、昨年度から 気象台の研究会とは独立に開催しており、今年は2年目 で、ようやく定着してきた感じであった. すなわち、参 会者は地元の九州大学,福岡大学,気象台関係その他の 学会員約70名に及び、その中10名ほどは初参加という会 員であった.

講演題目および発表者は次のとおりである.

- 1. 対馬海峡を通過する寒冷前線の雨について 一対馬海峡での熱の供給について一
 - 宏(厳原測候所) 前田
- 2. 地上風の収束発散と強雨域について
 - 平野 博(福岡管区気象台)
- 3. 下層の風向を利用した宮崎県の雨量予想について
- 4. 絹笠山 (雲仙) の風と短時間雨量
 - 良造(福岡管区気象台) 堤
- 5. 長崎原爆当日の気象
 - 田畑 七郎(長崎海洋気象台)
- 6. 地震発生前後における地中温度の変化
 - 付:地震なまずの由来に対する一考察と筑紫の石 城について
 - 真鍋 大覚(九州大学工学部)
 - 志賀 正信(長崎海洋気象台)
- 7. 黄沙発現の周期
 - 真鍋 大覚,佐藤 洋子 (九州大学工学部) 荒生 公雄(長崎大学工学部)
- 8. 山越え気流の数値実験

- 大場 良二 (三菱重工業長崎研究所)
- 海陸風——局所加熱の影響 大河内康正(九州大学理学部)
- 10. アメダスとレーダエコーからみた九州地方の降雨 特性
 - 黒木 義秋,渡辺 觔
 - (福岡管区気象台)
- 11. 海洋の大気太陰潮汐への影響
 - 上野 充,澤田 龍吉

(九州大学理学部)

- 12. 最大混合層高度と汚染濃度との関係 早川 誠而, 坂上 務, 元田雄四郎
 - (九州大学農学部)
- 13. 嘉万ポリエの霧について

前田 時博 (大嶺中学校)

- 14. 夏から初秋の気温予想法に対する総観的考察 山鹿 延(福岡管区気象台)
- 15. 傾圧不安定の一側面
 - 瓜生 道也 (九州大学理学部)
- 16. 回転水槽中の傾圧不安定波
 - 治,細川 善弘,河喜多益子 守田 (九州大学理学部)
- 17. 進行波による二次流れ 久保 光則 (九州大学理学部)
- 18. 降雨機構の違いがレーダ反射強度におよぼす影響 について
 - 早川 誠而, 坂上 務, 元田雄四郎 (九州大学農学部)

◎天気//25.3.