赤外線測定による気温鉛直分布の観測*

晋**

山 本

1. はじめに

気温の鉛直分布、なかでも接地性および上層逆転層高 度の日変化の経常的観測は、大気境界層を解明しさらに は大気汚染を予測する上で重要である.従来,気温の鉛 直分布は,地上数百mまではタワー,係留気球, さらに 上層ではゾンデ,飛行機などにより観測されている. し かし、これらの方法は、通年観測に適しない、測定地点 が制限されるなどの難点がある。そこで、地上から遠隔 的に気温鉛直分布を連続測定できる装置の 開発 が 望ま れ,電波や赤外線を利用する方法が考えられている.前 者は、大気中の酸素ガス分子からのマイクロ波(40~60 GHz)の強度が温度に依存することを利用したものであ り (Hosler, 1972), 後者は, 人工衛星による大気中の炭 酸ガスの射出する赤外線強度の測定から気温分布を推定 する方式を地上設置型に改良したものである(山本他, 1975; 山香他, 1975 a; 中村他, 1976 a; Wang et al., 1975; 青木他, 1973).

本論文では、CO₂15 µ 帯の赤外線強度の波長別測定に よる地上設置型気温鉛直 分布 測定装置(中村他,1976b; 松下技研㈱製作)の概要と,測定原理および本装置によ る測定結果,さらに、係留気球,飛行機,タワーなどを 利用した直接測定との比較観測などについて述べる。

2. 測定原理と装置の概要

2.1 測定原理

ある高度の大気から射出される赤外線強度は、そこで の気温,吸収物質の量により決まる.いろいろの高度か ら射出された赤外線は、吸収されつつ地上に達する.地 上では、これらの諸高度からの赤外線の重ね合わせが測 定される.吸収の強い波長域では、高い高度から射出さ れた赤外線は途中の吸収物質により吸収され地上に到達 しない.しかし、低高度からの赤外線は地上にまで届

* Measurement of the atmospheric temperature profiles by infrared spectroradiometer.

** S. Yamamoto, 公害資源研究所. この解説は, 公害 (1977, Vol. 12, No. 5)の 論文を転載したものです (編集委員会). き,低高度の気温の情報を伝える.これに対して,吸収 の弱い波長では高々度からの赤外線も減衰せずに地上に 到達し,高い高度の気温の情報を伝える.このように, 吸収強度の異なる波長の赤外線強度を地上で測定するこ とにより,種々の高度の気温の情報が得られる,すなわ ち,吸収物質の鉛直分布が既知とすると,気温の鉛直分 布が推定される.このためには,鉛直分布が単純(容積 比0.03%で高度 100 km までほぼ一定)で,場所的,季 節的変動の比較的少ない炭酸ガスが適している.

本測器では、炭酸ガス 15 μ 赤外線吸収帯の 5 波長(波 数 680.8, 701.3, 711.0, 716.8, 723.4 cm⁻¹) にピーク をもつ 5 個の赤外線干渉フィルターを通して、 5 波長別 の赤外線強度を地上で観測する.第1 図には、炭酸ガス の赤外吸収特性と赤外フィルターの透過特性を示してい る. 波数 680.8 cm⁻¹ から大きくなるとともに炭酸ガス の赤外線透過率が大きくなっている. また、この波長帯 には弱いながら水蒸気の吸収があるが、この影響は補正 計算により除去することができる.

以下に, 放射伝達の式に基づき測定原理を 説 明 しよ

第1図 炭酸ガス 15μ 帯の赤外吸収と赤外フィル ターの透過特性 (中村他, 1976).

◎天気/ 25. 5.

う. 地上で測定される鉛直下向きの i 番目のフィルター を通しての受光強度 Fi は,

$$F_i = A \cdot \Omega \cdot \alpha \int_{\nu} \int_{y_g}^{\infty} f_{i\nu} B(T(y)) \frac{d\tau_{\nu}(y)}{dy} dy d\nu \qquad (1)$$

ここで, A:ミラー面積

 $\Omega:$ 視野角

$$\alpha$$
:光学系透過率

 $y = \log_{10} z$, z:高度

 $y_g: 受光面の高さでの y$

 $f_{i_{v}}:i$ 番目のフィルターの透過関数

 $\tau_{\nu}(y)$:透過関数

である.荷重関数 $d\tau_v(y)/dy$ は、各フィルターの波長毎に固有の高度にピークをもち、その上下で単調に減少する.したがって、(1)式の積分のうち、 F_i には $d\tau_v/dy$ のピーク高度の B(T(y))の寄与が最も大きい、すなわち、 F_i にはそのピーク高度の温度の情報を最も多く含んでいることになる.これが、フィルターを適当に選んで波長別に F_i を測定することにより、気温の鉛直分布を推定することのできる理由である.第2図は、本測器に使用している5個のフィルターの荷重関数の高度変化を示す.矢印は、各フィルターの荷重関数のピークの位置を示しているが、680.8 cm⁻¹の波数から除々に上層に移っていることが分かる.

さて、(1)式での B(y) の ν による変化は、他項の変化に比較して小さいので無視され、B(y) を ν の積分の

第2図 荷重関数 (F_W=dτ_v/dy) の高度 変化 (中村他, 1976).

外に出すことができて、(1)式は、

$$F_{i} = \int_{y_{g}}^{\infty} B(y) K_{i}(y) dy$$

$$\geq \hbar \mathcal{Z}, \quad \zeta \subset \mathcal{T}, \qquad (2)$$

$$K_{i}(y) = A \cdot \Omega \cdot \alpha \int_{v} f_{iv} \frac{d\tau_{v}(y)}{dy} dv$$
(3)

である. (3) 式の $K_i(y)$ の計算には膨大な計算量を要す る. しかし, $K_i(y)$ は気温への依存性が B(y) に比べて 小さいので,あらかじめ,季節別,地域別に応じた数種 のモデル大気について計算しておき,気温の計算時には $K_i(y)$ の内挿値を用いることができる. 第3図には,こ こでの $K_i(y)$ の計算に用いた季節別の気温モデル分布 ($T_m(y)$) が示されている.

実際の気温分布に対応したプランク関数 B(y) を, モ デル分布のプランク関数 $B_m(y)$ と,それからのずれh(y)に分けて,

$$B(y) = B_m(y) + h(y)$$
 (4)
とおくと, (2) 式は,

$$r_i \equiv F_i - F_{im} = \int_{y_q}^{\infty} h(y) K_i(y) dy$$
(5)

ここで,

 $F_{im} = \int_{y_n}^{\infty} B_m(y) K_i(y) dy$

1978年5月

となる.実際の気温のモデル分布からのずれをheta(y)と すると,h(y)は,

$$h(y) = \left(\frac{dB}{dT}\right)_{T = T_m(y)} \theta(y) \tag{6}$$

で近似される.(6)式を(5)式に代入して,

$$r_i = \int_{y_g}^{\infty} \theta(y) K_i'(y) dy \tag{7}$$

ここで, いいういいういう

$$K_i'(y) = \left(\frac{dB}{dT}\right)_{T=T_m(y)} K_i(y)$$

となる. 測定波長の数を *M* 個 (ここでは 5 個), 大気を *N* 層に分けるとして, (7) 式を和の形に書き直して,

$$r_i = \sum_{j=1}^{N} \alpha_{ij} \theta_j \quad (i = 1 \sim M) \tag{8}$$

ここで,

 $\alpha_{ij} = K_i'(y) \beta_j \Delta y$

β_j:求積法の荷重

∆y:大気の分割層の厚さ

となる。(8) 式を行列形式で書けば,

 $R = A\theta$

(9)

となる. (9) 式から, θ は直接 $\theta = A^{-1}R$ として求めら れるはずであるが, 実際は Rの測定誤差などのために不 安定な解しか得られない. これを避けるために, 実用的 には Rの測定誤差が最小となるような条件を付加して, (9)式を解く方法 (Twomey, 1965), 気温分布の初期値 を与えて, 各波長での赤外放射量を計算し, これと観測 値との差から新しい一次近似気温分布を求め, この気温 分布を使用して, 各波長での放射を計算することを繰り 返す方法 (Smith, 1970; 逐次近似法) などが用いられ る. ここでは, 後者の方法により計算した.

2.2 装置の概要

装置の概略的なシステムおよび検出部の構成を第4図 に示す.第5図は装置の外観の写真である.天空からの 赤外線は,赤外干渉フィルターを通じて赤外レンズ(ゲ ルマニウム,視野角10度)により集光して焦電形赤外線 検出器により測定する.検出器は,同時に7チャンネル (7波長別)の分光測定を行なう.また,検出器には, チッパーにより大気からの赤外線と温度コントロールさ れた黒体羽根の基準赤外線が交互に入って測定精度を上 げている.

さて、検出器からの信号は前置増幅器で増幅され、50m コードにてデータ処理部に送られ、赤外線強度に比例し た電圧がレコード部で記録される.これら7チャンネル のデータはオフラインにより計算機に入れられ、このう

第4図 測定システムの概略および検出部の構成 (中村他, 1976).

第5図 本装置の外観(機械振興協会提供).

ち5波長のデータから,前節に述べた方法により気温鉛 直分布が計算される.残りの2波長のデータからは,視 野内の雲の高さ,雲量が推定される.

3. 測定結果

增幅器

茨城県鹿島および東京都北区浮間において,本測器に より気温鉛直分布の観測を行なった. 同時に,係留気 球,飛行機,タワー等により気温を直接測定し,本測器

◎天気/ 25. 5.

326

第1表 観測データ

測定場所	測定期日	気温分布 直接観測 手 段	備考
茨城県 鹿島	1974 8/20, 22, 23 (日中)	飛 行 機 係留気球	飛行機観測:25 ~30 km の範囲 の平均的な気温
"	1975 8/19 (日中)	飛行機	57年の周定。 係留気球,ゾン デ:測定地点は 本測器とほぼ同
東京都 北区浮間	1976 3/6,7,8 (日中)	低 層 ゾンデ	
"	1977 1/25,26 (日中,夜間)	川 口 送 屠 デ	川口放送塔:測 定地点は本測器 より約5km 北 東.
"	1977 2/17~24 (日中,夜間)	川 口 放送塔	

の精度について検討した。第1表にここで使用した観測 データをまとめて示している。以下に、本測器の精度の 検討結果と本測器による気温の接地逆転層の観測結果に いて述べる。

3.1 直接測定との比較観測

鹿島 (1974 8/22, 23) における晴天時日中の観測の一 例を第6図に示す.日中の観測結果においては全体的に 直接観測と良い一致が得られているが、細かい点では喰

第7図 晴天夜間における測定例(浮間, 1977 1/25, 26).

い違いが見られる. 第1点は,日中観測において本測器 の結果では地上から100m程度までの気温の下がり方が 急激であるが,直接観測ではそれほど急でない.第2点 は,直接観測においては地上400~500m以上に温位の 逆転層の見られる例があるが,本測器では測定されてい ない.

第7図は、浮間における1977年1月25日夜半から26日 早朝にかけてのゾンデと本測器による観測結果である. この例では、顕著な接地逆転層と上層(高度400~800m) に逆転層が見られるかなり複雑な気温分布であるが、本 測器では比較的単調な分布が得られている.これは、測 定原理に起因しており、本測器の気温の高度変化に対す る分解能力があまり良くないことを示している.

第8図(a),(b)は,浮間における1977年2/17~2/24 の連続測定の結果である.また,第8図(a)(b)には,埼 玉県川口市のNHK送信搭(高さ313m,浮間より北東約 5kmに位置している)を利用したサーミスタ温度計に よる気温の測定結果も比較のために示している.第8

1978年5月

第8図(a) 気温分布のタワー (TOWER) および本測器 (INFRARED) による連続 測定結果の比較(浮間, 1977 2/17~24 9, 12, 15, 18h): INFRARED, TOWER それぞれについて地上でグラフを揃え,気温の相対分布のみを 示す.

第8図(b)第8図(a)と同じ(浮間, 1977 2/17~24 21, 24, 3, 6h).

328

図(a)は、日中(9,12,15,18h)の測定例である.全体的には本測器による観測は良好であるが、前述したように、12,15hの観測においては高度100m以下の下層での気温の高度変化がタワー観測に比べて急激すぎる. なお、夕方(18h)の測定では両者の一致が良い.第8図(b)は、夜間(21,24,3,6h)の結果であるが、接地逆転層の生成・発達の様子が良く観測されている.また、接地逆転層の厚さも両測定において良く一致している. ただし、夜間における本測器の観測では、最下層において急激な温度降下が見られるが、これはタワー観測に比較して大きすぎる.

第9図は、鹿島および浮間の日中晴天時の観測で直接 測定のある場合(36例)についての、本装置による測定 値(T_l)と直接測定値(T_D)の差、 $\Delta T(=T_l-T_D)$ の平均 値と平均値からのずれの RMS 値の高度分布を示す.こ れから上層での本測器の測定値は、全体的に0.5~1.0°C

直接測定値より低くなっており, RMS 値は0.5~1.0°C 程度であることが分かる.

第10図は,浮間における夜間晴天時の観測例(24例) の *AT* の平均値と RMS 値の高度変化を示す.これに よると,日中とは逆に本測器による値の方が平均的に過 大 (0.3~0.4°C)であり, RMS 値は 0.5°C 程度であ る.

このような、日中、夜間の測定誤差の原因として、日 射、測器本体の温度の日変化が測定値に影響しているこ とが考えられる.一つの推論としては、天空からの赤外 放射測定に測器本体の内壁の赤外線の影響が加わり、そ のために、測器周辺および内壁の温度の変化に対応した 誤差が生じていることも考えられる.

以上を総合すると,直接測定と本測器による測定が, 場所,時間の点で若干ずれているなどで厳密な結論では ないが,本測器の概略の精度は,日中で 1.0~1.5°C, 夜間で 0.5~1.0°C 程度である.

3.2 接地逆転層の観測

前節の第8図から、夜間の接地逆転層の測定が可能で あることが分かるが、この点をさらに検討してみよう。

第11図は,浮間(1977 2/17~24)における夜間連続測 定の気温分布から得られた温度の接地性逆転層の厚さの 時間変化である。上図が本測器による結果であり,下図 は川口タワー観測によるものである。両者の傾向は良く

第10図 夜間観測における本測器の測定精度(*dT* と誤差の RMS 値)の高度変化.

1978年5月

第11図 本測器 (INFRARED) およびタワー (TOWER) による接地 逆転層の厚さの連続観測の比較。

第12図 本測器およびタワー観測による接地逆転層の厚さ(Zi1 – ZiD)の比較(浮間, 1977 2/ 17~24).

一致しており、夕方の 19h 頃より逆転層の形成が始ま り、夜半すぎ(3h)まで発達して 150~200m の厚さ に達する。その後は、逆転層の厚さはあまり変化しない で朝方まで存続し、日射による地面加熱とともに急激に 消滅している。

第12図は、本測器による接地逆転層の厚さ(Zii)とタ ワーによる結果(Zio)を比較したものである。これによ ると、データのバラツキは大きいが、Zii と Zio の一致 は良く、本測器による接地逆転層の観測が可能であるこ とがわかる.

4. おわりに

赤外線を利用した気温鉛直分布の測定原理と装置の概 略について説明し,さらに,本測器による測定と直接測 定の結果を比較して,本測器の精度,気温の逆転層観測 の可能性について検討した.ここで得られた主要な結論 は,次の2点である.

(1) 本測器の精度は晴天時の日中で 1~1.5°C, 夜間 では 0.5~1°C 程度である. しかし, この精度は, 測定 方法および計算方法の改良により上げることができるも のと思われる.

(2) 本測器による連続測定により,接地逆転層の厚さ の観測の可能性が確かめられた.なお,上層の逆転層に ついては現時点では観測できない.

今後の課題としては、まず第1に精度を上げることで あるが、そのためには、種々の計算方法による結果を比 較して、その改良を計ること、水蒸気などの妨害物質の 影響の除去の精度を上げること、日射、気温などの測器 周辺条件の変化の影響を完全に遮断することなどが必要 である。第2には、上層の逆転層観測を可能にすること である。この点については、測定方法の改良すなわち測 定方向を水平から鉛直まで変化させる斜め観測を行なう こと、または、フィルターを目的に応じて切り換えるよ うにして上層観測に適した波長域を選択するなどにより 可能になるであろう。第3点は、測定視野内に雲がある

▶天気/ 25. 5.

場合の計算方法であるが,これについては種々試みられ ているようであるが,まだ完成したものとなっていない.この点の改良が必要となる.

謝辞

最後に,本研究のデータ使用に際して御協力いただい た 機械振興協会,また,装置の保守管理および計算方法 などで御助力をいただいた 松下技研の山香,中村両氏, 計算方法,測定誤差などについて有益な助言をして下さ った 東北大学理学部の青木氏に感謝する.さらに,気温 分布のデータを提供して下さった 公害資源研究所の林, 蒲生両研究員に感謝する.

文 献

青木忠生,山本義一,1973: 気象衛星による放射測 定とその利用,天気,20,477-487.

Hosler, C.R. and T.J. Lemmons, 1972: Radiometric measurements of temperature profiles in the planetary boundary layer, J. Appl. Met., 11. 341-348.

- 中村邦雄他,1976 a:地上設置型気温垂直分布測定装 置について(Ⅲ),日本気象学会秋季大会予稿,352.
- 中村邦雄他, 1976 b: 地上設置形気温垂直分布測定 装置, National Tech. Report, 22, 577-582.
- Smith, W.L., 1970: Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere, Appl. Optics, 9, 1993-1999.
- Twomey, S., 1965: The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements, J. of the Franklin Institute, 279, 95-109.
- Wang, J.Y., C.R. Claysmith and M. Griggs, 1975: Measurement of lower atmospheric temperature profiles from ground-based infrared observations, J. Appl. Met., 14, 308-318.
- 山香英三他,1975:地上設置型気温垂直分布測定装置について(II),日本気象学会秋季大会予稿,84.
- 山本義一他,1975:地上設置型気温垂直分布測定装置について,日本気象学会春季大会予稿,149.

音波レーダによる大気境界層の観測*

林		正	康**	横	山	長	之**
小	堀	泰	宏***	斉	藤		進***

1. まえがき

音波を利用した大気境界層の探査方法は、 McAllister et al. (1968)の最初の成功以来,多くの試みがなされてい る. 一つは,エコーの強さやパターンと他の気象条件と を関連づける試みであり,他は、ドップラ効果によるエ コーの振動数の変化から,反射領域の風向風速を測定す る試みである.地上から送信した音が上空で反射される 際に,音を反射する領域が運動している場合,反射音は ドップラ効果により振動数が変化する.反射領域の速度 と振動数の関係は,第1図に示すように,

- * Measurement of the atmospheric boundary layer by SODAR.
- ** M. Hayashi and N. Yokoyama, 公害資源研究 所.
- *** Y. Kobori and S. Saito, 海上電機㈱. この解説は, 公害 (1977, Vol. 12, No. 5)の論 文を転載したものです (編集委員会).

$$V\cos\beta = \frac{C}{2\sin\frac{\Theta}{2}} \cdot \frac{\Delta f}{f_0} \tag{1}$$

で与えられる (Beran, et al., 1973). ここで, C は音速, V は送信音と反射音のつくる平面の風速成分, f₀ は送

第1図 送信音と反射音の関係 (after Beran *et al.*).

17