寒冷前線に伴う帯状エコーの本州中部 付近における変化*

村木彦 麿**

要 旨

帯状エコーは、日本海沿岸部で量,強度とも最大となり、本州上では強度が減少し、太平洋沿岸部で量が 減少する.全体が洋上に出ると、量,強度とも増大する.850mb面でみると、日本海上と本州の南の海上に あるときは暖域の中に存在するが、本州上にあるときは暖域から転移層の中にかけて存在する.

1. はじめに

1974年2月22日21時から23日21時にかけて寒冷前線が 本州付近を通過した.この寒冷前線は、大きなスケール で見る限りでは、ほぼ等速度で移動している.また、こ の期間は、850mb面で前線の北側には朝鮮北部〜中部か ら、南側には東シナ海方面から空気が流入している.

本文は,この寒冷前線に伴う地上降雨の特徴と気象レ ーダでみた帯状エコーの変化を,本州中部付近の日本海 上から太平洋上におよぶ領域で調べたものである.

第1図に,地形と観測点およびレーダの有効探知範囲 (富士山レーダで半径400km,その他のレーダで200km の円内とする)を示す.図の長方形の領域(430×830 km²)は、いずれかのレーダの有効探知範囲にほぼ入っ ており,帯状エコーの量,強度の時間変化を調べるため に前線の走向に直角方向に決定したものである.地上観 測点はこの領域になるべく均一に分布するように選んで ある.地上の寒冷前線の通過時刻は,地上風と相当温位

(θ_e)の急変する時刻とした. 帯状エコーは,新潟,福井,東京,富士山の各レーダによる同時刻のエコーのス ケッチ図を合成したものである. なお,新潟レーダでは エコー強度は区別されていないので,強度変化の推定に は3時間雨量分布図を用いた.

2. 500mb 面の渦度分布と地上天気図

数値予報天気図によれば,500mb 面では解析期間中 は,42~43°N を中心としてモンゴルから中国東北区,

- * A Behavior of a Radar Rainband Associated with the Cold Front over the Central Part of Japan.
- ** H. Muraki, 環境庁大気保全局.
 ——1976年12月27日受領——
 ——1978年9月4日受理——

北日本,千島に およぶ 東西に広がる正渦度域と,33~ 35°N を中心としてほぼ東西に広 がる負渦度域 があっ て,それぞれの域内には 500~1000km 離れて極大があ る.本州付近ではこの期間中正渦度の極大は日本海西部 に,負渦度の極大は本州の南東海上にあって,それらの 分布の変化は小さく,正渦度域の大きな南下はない.

一方,地上天気図(第2図)では,23日21時まで前線 はその走向に直角方向に平均速度25km/hr(=600km/ 24hr)で、日本海沿岸から八丈島付近へ移動したが、そ の後停滞し前線上には低気圧が発生し、高気圧は大陸か ら北偏してはり出した。また、500mbの気圧の谷は日本 海西部にあって23日21時までおよそ30km/hrで東進して いるが、39°N以南では不明瞭になっていた。

3. 地上降雨の特徴と帯状エコーの変化

第3図に,輪島から八丈島までの各地の地上気象要素の変化を示す.これから主要な降雨¹⁾の開始時刻(*T_R*),地上の寒冷前線の通過時刻²⁾(*T_F*),最大降雨強度の起時

- 1)降雨強度の自記紙でみて,降雨開始後強度が急激 に大きくなり,その後10分間以上の止み間がなく 連続する降雨,または降雨開始後強度が急激に大 きくなるいくつかの短時間の降雨(それらの時間 間隔は最大で1時間程度以内)から成る一群の降 雨とする。
- 2) 宇都宮では通過時刻不明. 前橋では北〜北西の風 がやや強くなると同時に θe は急昇し, その最大 値は日本海沿岸部でみられた θe の急降下直前の 値にほぼ等しくなる. また, 急昇前11時間は網層 雲または高層雲があり,風は非常に弱く煙霧があ って,接地逆転層の存在を暗示する. これらのこ とから θe の急昇が前線の通過を示すと考えられ る. 新潟では θe が最大値を示す前に値が大きく 変動(原因は不明)しているが,風の急変ととも に θe が最大値から急降下した時刻を前線の通過 時刻とした.

第1図 地形と観測点.

●は地上気象観測点, ◆はレーダ観測点, ◆は地上 気象およびレーダ観測点, ◎は高層気象観測点. 破 線は富士山レーダから400kmを示し, 実線はその他 の各レーダから200 km の線を連ねたもの. 長方形 はエコーの量, 強度の変化を調べた領域. 陰影部は 海抜高度 1000m 以上の地形, 数字は地点番号で, 572:弥彦山, 600:輪島, 602:相川, 604:新潟, 605:金沢, 610:長野, 615:字都宮, 624:前橋, 639:富士山, 646:館野, 648:銚子, 662:東京, 677:三宅島, 678:八丈島, 705:東尋坊.

 (T_M) を読み取り,前線の通過時刻と降雨開始時刻の差 $(T_F - T_R)$ および最大降雨強度の起時と前線通過時刻の 差 $(T_M - T_F)$ を求め第1表を得た.

これによると、日本海沿岸部では降雨強度が比較的大 きく、降雨の初期には強度変化も大きくしゅう雨性の特

16

徴を示すが,その後 地雨性としゅう雨性が共存し,長時間持続する。

内陸の長野から南では断続的な降雨となり,関東平野 では強度は弱く複雑な特徴を示す.

しかし、太平洋沿岸部から南の海上(銚子,三宅島, 八丈島)では強度は再び大きくなり、主としてしゅう雨 性で、三宅島ではしゅう雨性の後に地雨性降雨がみられ る(この傾向は東京にもみられる)

また,前線の通過時刻と降雨開始時刻との関係につい ては,日本海沿岸部では前線の通過前に各地点とも主要 な降雨が始まっているが,内陸では遅れ,太平洋沿岸部 から南の海上(三宅島を除く)ではほぼ同時刻となって いる.

次に,第4図に帯状エコーの3時間ごとの変化と軌道 衛星の雲写真による雲域を示す.第1図の長方形の面積 に対する領域内の帯状エコーの面積の百分率をエコー量 とし,また3時間雨量分布図(省略)から長方形内の前 3時間の降雨の総量を求め,第1表を用いて第5図を得 た³⁾.第4,5図から帯状エコーが本州の中部付近を通 過するときに次の特徴がみられる.

- (1) 前線が日本海沿岸部に接近した22日15時から18時 にかけて散乱するエコーは団塊状にまとまり、エコ ーの量,強度が増大し、特に23日04時30分に能登半 島の南西海上で強度が増大している。団塊状のエコ ーは混合エコーでその前部は対流性である。
- (2) 日本海沿岸部から中部山岳を通過する時刻に移動速度は小さく⁴⁾なり、23日 04時 30分から 09 時にかけて中部山岳の北側と関東北部を流れるエコー要素P、P'がみられ、09時から12時(東京レーダによれば特に09時から10時)にかけては関東地方の東海上(領域R)で量が急増⁵⁾している。エコー要素P'は
- 3) 横軸には前線に直角方向の直線上に投影した地点の位置と、前線の平均移動速度を25km/hrとして時間空間変換から決めた時間を示す.エコー域も25km/hrで移動したと仮定して輸島と八丈島の中点Cにおける時刻を、エコー域の中心線が通過する時刻としてある。
- とのような事例については、たとえば櫃間・大平(1974)も示している。
- 5) 09時の局地天気図(省略)では前線は鹿島灘から 関東の東海上に出ており、エコー量は東京レーダ による連続写真観測によれば、前線付近からその 後方の海上で、1時間程度の間に急速に増大して いる.このため長方形内の領域全体でみれば09時 から12時にかけてエコー量の変化は小さくなって いる.

*天気/ 25.10.

第2図 1974年2月22日21時の 地上天気図。

実線は地上の等圧線,細い破線は 500mbの等高線,二重線は500mbの 気圧の谷,太い破線 F_1 , F_2 はそれ ぞれ12時間,24時間後の寒冷前線。 長方形は第1図に示した長方形に対 応する。

第3図 地上気象要素の時間変化

前線の走向に直角方向の直線上に 投影された地上気象観測点(600か ら678)における降雨強度の記録(各 地点ごとに縦軸は降雨強度,横軸は 時間で時間目盛は図の下に示す), および各地の20分ごとの相当温位 (実線),相対湿度(破線),毎時の 風(Cは静穏)を示す.矢印は主要 な降雨の開始時刻,二重の矢印は前 線の通過時刻を示す.

寒冷前線に伴う帯状エコーの本州中部付近における変化

要素	主要な降雨の 開始時刻(T _P)			地上の寒冷前 線の通過時刻			最大 降 雨強度	最大降雨強度 の起時 (T _M)			$T_{F} - T_{R}$		$T_M - T_F$		主要な降雨 の継続時間	
地点	日日	時	分	日	(時	1 _F) 分	mm/h	H	時	分	時	分	時	分	時	分
600	22	20	20	22	22	40	21	22	22	00	2	20	-0	40	11	00
602		20	55		23	00	17	23	02	45	2	05	3	45	10	05
605		22	55	23	02	20	13		01	05	3	25	-1	15	10	25
604		21	25		00	20	17	22	21	35	2	55	-2	45	11	35
610	23	04	05		01	40	11	23	04	35	-2	25	2	55	8	05
624		08	00		05	20	9		08	15	-2	40	2	55	0	45
615		09	00				3		09	55			-		2	45
662		11	10		08	00	8		12	25	-3	10	4	25	3	55
648		10	10		10	20	22		10	15	0	10	-0	05	4	30
677		15	35		11	20	17		16	30	-4	15	5	10	2	05
678		16	10		15	40	40	1	16	25	-0	30	0	45	1	05

第1表 寒冷前線に伴う各地の降雨に関する諸量。一は不明。

第4図 寒冷前線に伴う帯状エ コーの時間変化と雲域.

陰影部は強度W(弱)以下,黒塗 部は強度M(並)以上の領域,斜線 部は上空エコー.P,P'は中部山岳 の北側,関東北部を流れるエコー, R(右上12LSTの鹿島灘付近)は 急増したエコー域,STは海上で発 生した線状エコー.23日09時と21時 には破線で雲域(C)も示す.21時 (IR写真のみ)の雲域の北西側の 縁はIR,VIS写真から決定した 09時の雲域の北西側の縁に対応す る.図の右下にはエコー域の中心線 の時間推移を示す.

▶天気″ 25.10.

太い実線と破線はそれぞれエコー量と最大降雨強度,細い実線と破線 はそれぞれ前3時間の長方形(第1図参照)内の降雨総量と主要な降雨 の継続時間を示す.縦軸には左からエコー量(%),降雨強度(mm/hr), 重量(ton),継続時間(h),横軸には前線の走向に直角方向の直線上に 投影した観測点の相対的な位置と時間空間変換による時間を示す.

-400

MB

500

١.

1111

対流性で、その西方に前線の走向に平行に広がるエ コー(Q)は主として層状である。

- (3) エコー域の中心線が日本海沿岸部から関東平野北部にある間(04時30分から12時)は量の変化は小さいが,強度は09時にかけて減少し,最大降雨強度も降雨の総量も急減している。
- (4) 12時から18時にかけて量は急減しているが、エコ ー域全体が海上に出た21時には増大し対流性エコー が主体を占めてくる.最大降雨強度は12時以後次第 に増大し21時には非常に大きくなる.また、15時に やや強い線状エコーSTが出現している.

富士山レーダによれば,線状エコーSTは23日13時58 分頃発生し,14時58分に八丈島の北で明瞭になる.八丈 島にみられた強いしゅう雨性降雨(第3図参照)はエコ ーSTに対応するものである.

雲写真による前線に伴う雲域の中に占めるエコー域は 雲域の南半分に集中している傾向がみられ,雲域中の降 水エコーの占める割合(立平,1972;岡林,1972)につ いては,第1図の長方形内の各面積で比較して,エコー 量では最盛期にある23日09時に雲域の面積の27%となっ ているが,21時には14%に減少している。

4. 大気の鉛直断面と850mb面でみた帯状エコー

帯状エコーが日本海沿岸部にあるときの輪島,館野, 八丈島を結ぶ線上の鉛直断面図(第6図)によると,湿 潤暖気(θ。が高く湿度 80%以上の空気とする)が本州 の日本海側で厚く太平洋側では下層にのみ流入し,輪島 の 910mb と館野の 920mb 付近に強風(下層ジェット) がある.これらの強風が中部山岳をはさんでどのように 関連しているかは不明である.館野では 910mb 付近に

 輸島, 館野,
 中の線線,

 な降雨の継緝
 な降雨の総損

 する)が本州
 18時(21時

 流入し,輪島
 一頂高度をえ

 層ジェット)
 る. 太い矢円

 でどのように
 知声がく思

111

30

第6図 1974年2月22日21時の鉛直断面図.

実線は等相当温位線,破線は等湿度線で陰影 部(M)は湿度80%以上の湿潤域,Dは30%以 下の乾燥域,斜線部は輪島における地上の主要 な降雨の継続時間を空間変換して得た降雨の存 在する区間で,カッコ内には着目するエコーの 18時(21時の観測値はない)における最大エコ 一頂高度を示す.寒冷前線の位置は地上前線の 輪島における通過時刻を空間変換して決めてあ る.太い矢印は等温位面運動を仮定して求めた 鉛直流(黒:上昇流,白:下降流),黒塗部は 本州の中部山岳を示す.

1978年10月

第7図 輪島における鉛直時間断面図. 実線,破線,陰影部(M),Dは第6図 の説明を参照。Aは下層における θ_e の極大 域。斜線部は輪島における地上の主要な降 雨の時間帯を示す。地上の前線の位置は輪 島における前線の通過時刻から決めてあ る。

逆転層の底面があり,強風はその付近より下の薄い層に 限られる.逆転層は本州東方海上にある大きな高気圧の 北西側の縁辺にあたる館野,八丈島にあり,これらの地 域では上昇流は下層だけでその上に下降流があり乾燥し ている.一方,輪島では厚い層にわたって上昇流が存在 し,湿度が高く最大エコー頂高度も高い.

輪島における鉛直時間断面図(第7図)は,前線近傍 で θ_e の鉛直傾度が極端に小さく高湿度域が高い高度ま で広がっており,対流活動の盛んなことを示している. 700mb 以下の前線近傍の θ_e の高い気塊は,後述する前 線面前方に流入する湿潤暖気である. 暖気核(A)の前方 と後方では, θ_e の値はほとん ど同じでもその成因は全 く異なる.前方では低湿度が意味するような沈降を伴う ものであり,後方の気塊は雲域を伴う高湿度のものであ る.700 mb 以上では θ_e の極大域の前方も後方も等 θ_e 線はほとんど鉛直に延び鉛直運動の盛んな領域である が,前線帯の上空では激しい対流活動による水分の上方 輸送の結果,高い θ_e を示すものと解釈される.

次に, エコー域が前線に対してどの位置にあるかを知るために, 12時間ごとの 850mb 天気図 (第8図(a)~(c))を示す. これによると,帯状エコーが日本海上にあ

第8図(a)

第8図(b)

▲天気/ 25.10.

20

(c) 第8図 850mb天気図

(a) 1974年2月22日21時 (b) 23日09時

(c)23日21時

細い実線と破線は、それぞれ等相当温位線、等高線、 太い破線は地上の寒冷前線、太い実線は流跡線で、●と 〇はそれぞれ24時間、12時間前の気塊の位置(▲と△は 風の推定値による)を示す.陰影部はエコー域.22日21 時のエコー域は22日15時、18時および23日04時30分の観 測から推定したもの.破線で示した風は推定値.図(a) (b)で二重線は湿度80%以上の領域の南縁を示す.図 (c)では本州(浜松,仙台を除く)とその南の海上で 湿度は80%以上である.W,Y,T,H,S,HJはそ れぞれ輪島、米子,館野、浜松、潮岬、八丈島.

るとき(図(a))は、エコー域は 850mb 面の前線帯⁶⁾(θ_e の傾度はおよそ $3 \times 10^{-2^{\circ}}$ K/km)の前方の舌状に延びる 湿潤暖気内にあり、地上の前線の前方から前線の後方に 広がる.その前部は対流性で、エコー域の中には前述の強 風があり、湿潤暖気は東シナ海方面から流入している. Warm conveyor belt (Browning, 1971)に相当すると 思われるこの強風を伴った下層の湿潤暖気の北限は、 850mb 面では東北地方付近である. 帯状エコーが本州上に移動したとき(図(b))は,エコ ー域の主要部分は地上の前線の後方 100km 付近から後 方に広がり, 暖域から転移層の中にある.地上から 850 mb の間の前線面の平均傾斜はおよそ1/90で12時間前よ り大きくなっている.湿潤暖気は前と同じく東シナ海方 面から流入し,寒気側の輪島,米子では空気は朝鮮北部 ~中部から流入し始めている.湿潤暖気内の強風は潮岬 より下流に行くにつれ弱くなっている(館野における鉛 直時間断面図でも湿潤暖気内の下層の風速は弱く極大は みられない).

帯状エコーが本州の南海上に移動したとき(図(o))に は、寒気は浜松まで達し、館野、潮岬では東シナ海方面 からの湿潤暖気の流入が残っている。エコー域は地上の 前線付近から後方に広がり、前線面上の暖域の中にあ る。前線面の平均傾斜はおよそ1/190で再び小さくなっ ている。

5.まとめ

太平洋にある高気圧の北西側の縁辺で,東シナ海方 面から南西風として流入する湿潤暖気と朝鮮北部〜中部 から北西風として流入する寒気の境界領域に発生した帯 状エコーが,本州を通過するとき本州中部付近でみられ る特徴は,

(1) 帯状エコーが日本海上にあるとき

エコー域は地上の前線の前方から前線の後方に広が り、850mb 面でみると湿潤暖気の中にあって、エコ ー域の中に下層ジェットがみられる.地上から850mb の間の前線面の平均傾斜は小さい.帯状エコーの接近 により地上降雨ははじめ強度変化が大きくしゅう雨性 であるが、後に地雨性としゅう雨性の共存する降雨の 特徴を示し、エコーの特性とも矛盾しない.

エコー域が海上から沿岸部に近づくとともに散乱するエコーは団塊状にまとまり,量,強度が増大している. エコーの量,強度の増大は下層ジェットの強化 (島田, 1963)に対応して起こっているかもしれない.

(2) 本州上にあるとき

はじめ強度が、次に量が減少する.地上の前線付近 には対流性の小さなエコーがみられるが、エコー域の 主要部分は地上の前線の後方およそ 100km から後方 に広がっており、そこでは主として層状エコーであ る.前線面の平均傾斜は大きく(およそ 1/90)、エコ ー域は 850mb 面では湿潤暖気か ら転移層 の 中に あ る.湿潤暖気内の下層の風速は弱まり極大はみられな

729

1978年10月

^{6) 12}時間ごとの前線帯の位置は、各地の気温、露点、 風の鉛直分布と矛盾が少ないように決定してある。

い. 地上降雨は地点によって異なり,しゅう雨性,弱い地雨性,弱いしゅう雨性の後に弱い地雨性降雨の三 つの場合がみられる.

エコーと地上降雨の対流性の特徴が減少している主 因として、前線面前方の下層に強風を伴う湿潤暖気の 流入が地形により弱められる(下層で θ_o の極大のあ る高度で水蒸気の流量は、輪島で 211g・kg⁻¹・m・ sec⁻¹に対し館野では 111 でおよそ 1/2 となっている) ことが考えられる。また、南下する寒気の下部では本 州の脊梁山脈(中部山岳を含む)が障壁となり、相対 的に寒気の上部が前進するため前線面の傾斜が増大す ると考えられる。

(3) 本州の南海上にあるとき

量,強度は増大する.エコー域は地上の前線付近か ら前線の後方に広がっていて主として対流性であり, 850mb面でみると湿潤暖気内にある.前線面の平均傾 斜はおよそ1/190で小さくなっている.地上降雨は主 としてしゅう雨性である.

エコーと地上降雨の特徴から,下層に強風を伴う湿 潤暖気の流入域が海上に出て陸地の影響が小さくな り,対流活動が再び活発になると考えられる.

帯状エコーの量,強度の時間変化を調べるためには, エコーの生成・維持に関連をもつと考えられる総観場の 条件(たとえば 立平,1971)の変化も考える 必要があ る.また,本解析では,量,強度の変化を北西〜南東の 方向に固定した領域内の変化でみていることにも注意す る必要があるが、ここで着目する地域と時間、空間スケ ール内では地形の影響が大きく現われているといえる.

この調査は、金沢地方気象台において行なったもの で、気象研究所地方共同研究の一部をなすものである. 調査にあたり、前気象研究所 斎藤直輔 予報研究部長に は有益な御助言を賜わり厚く御礼申し上げます.なお、地 上およびレーダ資料の収集に御協力いただいた 気象衛 星センター 小佐野慎悟 技官をはじめ、東京管区 気象台 管内の多くの気象官署の方々に深く感謝申し上げます.

文 献

Browning, K. A., 1971: Radar measurements of air motion near fronts, Weather, 26, 320-340.

- 櫃間道夫,大平銀司郎,1974:寒冷前線に伴う大規 模な帯状エコーの北陸における動向,東京管区地 方気象研究会誌,No.7,184-186.
- 岡林俊雄, 1972: 温帯低気圧, 前線系の雲パターン, 気象研究ノート, 113, 70-72.
- 島田守家, 1963:不安定線の構造 と 降雨の 解析-1957年8月28日東北地方西部の豪雨について-, 研究時報, 15, 793-826.
- 立平良三,1971:帯状エコーの生成・維持に必要な 総観場の条件,研究時報,23,341-355.
- ----, 1972:衛星資料との合成, 気象研究ノート, 112, 121-125.