豪雨監視のためのレーダおよび雨量計観測網 に基づく雨量分布と雨域移動の客観解析*

二 宮 洸 三** 秋 山 孝 子***

要旨

Ninomiya・Akiyama (1978) は、豪雨実況監視を目的とする、レーダおよび雨量計観測網に基づく雨量 分布の客観解析(変分フィルターを使用する)の方法を提案した。本報告では、1972年6月27日の九州南西 部の豪雨について、この解析方法を使用して、豪雨最盛期を含む6時間について、連続した30分間雨量分布 図を作製した結果を示す。また、得られた30分間雨量分布図のシリーズから豪雨域を客観的に追跡する方法 を示した。このケースでは、豪雨域の移動方向は対流圏中下層の風向とは大きく異なっていた。豪雨域の移 動について若干の考察を加えた。

1. まえがき

レーダ観測(レーダ反射強度)から雨量強度を算定す ることは数多くの研究で行なわれ,いろいろな 種類の 降水に対して"Z-R 関係"が求められている(Joss・ Waldvogel, 1970; Battan, 1973 など参照).しかし,レ ーダ雨量強度が実測雨量強度と常に完全に一致するとは 限らないこともよく知られている.

レーダ観測は空間的時間的な観測の連続性に優位性を 持ち,雨量計観測はその地点の正確な観測値に意味を持 つ.水文気象や豪雨実況監視の目的のためには,この2 種類の観測システムの組み合わせに基づく雨量分布解析 が要求される.Wilson (1970), Brandes (1975), Brandes・ Sirmans (1976) は,雨量計データを "グランド・トル ース" (ground truth) として "レーダ補正係数"を求め 雨量分布を解析する方法を提案した.彼等は客観解析に は,Barnes (1964) の修正法 (correction method)を使 用している.

日本の豪雨の特性は; (1) 強雨 (~100 mm/hour) が 短時間 (~1~3 hour) に小領域 (~(50 km)²) に集中 すること,および (2) 複雑な降水過程 にある.した

- * Objective analysis of rainfall distribution and displacement of heavy rainfall area based on radar and gauge measurements for surveillance of heavy rainfalls.
- ** K. Ninomiya, 気象庁電計室

がって、レーダ補正係数は空間的にも時間的にも一様で あることは許されないし、雨量分布の解析にもなんらか の工夫が要求される。筆者は上記の条件を考慮して、レ ーダ観測および雨量計観測に基づく、豪雨の実況監視の ための雨量分布客観解析の方法を提案した(Ninomiya・ Akiyama, 1978).

本報告では、1972年6月27日の九州南西部の豪雨について、この解析方法を使用して豪雨最盛期を含む6時間について作製した連続した30分雨量分布図を示す。

豪雨実況監視のため,雨域の移動の追跡も必要であ

第1図 解析領域.東西 300 km,南北 310 km の領 域を30×31個の格子に分割する.

第2図 1972年6月27日02時~08時についての連続した12枚の降水強度分布図。

20

り,上記の連続した30分雨量分布図から,豪雨域の移動 を客観的に追跡することを試み,その結果について気象 学的な考察を加える.

2. 雨量分布

解析領域·解析期間

解析領域は、九州と周辺海域を含む 300 km×310 km の領域である(第1図). この領域を30×31個の(10 km)² の格子に分割し、その格子上の30分雨量を算出する. 解 析法は前報告(1978)に述べてあるが、その手順は下記 のように要約される;

1) レーダおよび雨量計データのインプット

2) 各雨量観測点における "レーダ補正係数 (radar calibration factor) の決定

3) レーダ補正係数の分布の決定

4) 3) に基づくレーダ雨量の補正

5) 補正されたレーダ雨量 (calibrated radar data) と 雨量計データに基づく雨量分布の決定

この 3) および 5) 項では, Sasaki (1970) の変分フィ ルターのうち最も単純な手法を使用する.

解析期間は, 1972年6月27日02時(日本標準時刻)~ 08時にいたる6時間である。

データ・ソース

この豪雨は第5次梅雨前線豪雨研究観測の期間に含ま れており,かなり多くのデータが利用できた.雨量計の 総数は,観測船,小島嶼の雨量計を含めて90点である. (海上でも,観測船,小島嶼の上で,レーダ補正係数が 求められている.)背振山レーダの等エコー観測が連続 して行なわれており,15分間隔のデータを使用した.(レ ンジ外,レーダシャドー部分,グランドエコー域では, もちろんレーダデータは使用されない.)

30分雨量分布図

得られた,連続した12枚の30分雨量分布図を第2図に 示す.この図の解析のための,変分フィルターで用いら れた係数の数値は, $\sigma_0=0.1$ および $\sigma_{grad}=0.5/(10 \text{ km})$ である(変分フィルターについては, Appendix 参照).

02時,長崎県近傍に中心をもつ雨域はゆるやかに南下 し,03時には,九州西南部(熊本・鹿児島県境近傍)に 達した.この間,海上から九州にかけ,西南西から東北 東に伸びるレインバンドの形態がみられる.レインバン ドの構造は,02時30分~06時30分の期間に最も明瞭に見 られ,降雨の極大はレインバンドが海岸線をまたぐ部分 の近傍に現われている.

この日の豪雨の総観的状況を詳しく説明することはこ

第3図 1972年6月27日03時の地上天気図。低気圧 の中心経路と,雨域のおおよその位置を模 図的に示した。豪雨の終止後南岸で発生し た副低気圧の径路も示してある。

の報告の主目的ではないので,第3図に27日03時の地上 天気図を示すにとどめる.弱い低気圧の中心が九州の北 方を通過し,それに伴う寒冷前線の近くで豪雨が発生し ている.(梅雨末期の南西日本の前線であるので,冬期 や高緯度の低気圧に伴う寒冷前線の特徴はみられない.)

雨量分布解析の結果の検証については前報告に述べて あるが、ここに掲げた 12 枚の連続した 30 分雨量分布図 は、前線の南下に伴う雨域の動向をよく記述していると 思われる。

3. 雨域の移動の客観的追跡

豪雨域の移動と中心域の雨量の時間的推移は,豪雨の 実況監視のうえで最重点的に把握されるべきことがらで ある.雨量が格子上の数値として解析されたので,豪雨 域の移動や中心域の雨量を客観的に求めることができ る.この節では2種類の方法で雨域の移動を追跡した例 を示す.

"豪雨域の重心"の移動

主観解析では、特定の等雨量線で囲まれた領域を時間 的に追跡することによって雨域の移動を記述することが しばしば行なわれるが、ここでは、雨域の細かなパター ンや特定の等雨量線にこだわらず"雨域の重心"を求める ことによって雨域の移動を調べる.この方法は Barclay・ Wilk (1970) および Merritt・Wilk・Wcible (1974) が 高分解能のレーダデータから大きな雷雲セルの追跡に使 用しているが、ここでは、個々のセルではなく、雨域全 体について使用する.

雨域の重心 (centroid) の位置 (x, y) は,

1979年1月

$$X = \frac{\sum_{i j} m(i,j) \cdot x(i)}{\sum_{i j} m(i,j)}$$

$$y = \frac{\sum_{i j} m(i,j) \cdot y(i)}{\sum_{i j} m(i,j)}$$
(1)

によって求まる. ここでは m(i, j) は格子 (i, j) 上で求 まった雨量であり, (x, y) は格子 (i, j) の x および y 座 標である.

第2図に掲げた雨量分布から求められた雨域の重心の 位置(黒丸で示す)の移動を第4図に掲げる.黒丸に付 した数字は時刻を示す.たとえば,0215を付した黒丸は 02時00分~02時30分についての雨量分布図上の雨域の重 心を意味する.

クロス・コリレーション計算による雨域の追跡

分布パターンの移動を客観的に示すためには、クロス・ コリレーション (cross correlation)の計算がよく使われ る. 静止衛星の"雲写真"から雲の移動ベクトルを求め る場合によく使用される方法である(Leese・Novak, 1972 など).

時刻 tにおける雨量分布を m(i, j, t) とし、時刻 $t+\tau$ におけるそれを $m(i, j, t+\tau)$ と書く. 後者を前者に対 し、x 方向に p 格子, y 方向に q 格子移動させ両者の相 関係数を,

$$c(p,q) = \frac{\sum [m(i+p,j+q,t+\tau) - \overline{m}(t+\tau)]}{\sqrt{\sum [m(i+p,j+q,t+\tau) - \overline{m}(t+\tau)]^{2}}}$$

$$\frac{[m(i,j,t) - \overline{m}(t)]}{\sqrt{\sum [m(i,j,t) - \overline{m}(t)]^{2}}}$$
(2)

によって求める. いくつかの (p, q) の組み合わせにつ いて求まった c(p, q) の中で最大(もっとも1.0に近い) の c(p,q) を与える (p, q) が, 時刻 $t \sim t + \tau$ の間のパ ターンの移動量(格子の単位で計った)である.

実際の計算ではてが過少だと移動がわかりにくく、 が過大だと、パターンの変形のため移動が決まりにくく なる.ここでは、時刻02時15分(02時00分~02時30分に ついての雨量分布)の雨域の重心を起点として、て=1 時間にとって、クロスコリレーション法によって雨域の 追跡を行なった結果を第5図に示す.

第4図と第5図を比較すれば、観点の異なる二つの方 法で求めた雨域の追跡は、ほとんど同一の結果を与えて いることがわかる.

豪雨域中心の雨量の変化

次に,雨域の代表的雨量の増減を見たい.豪雨域(中

MOVEMENT OF CENTROID OF PRECIPITATION

第4図 "雨域の重心"の位置とその移動径路。

MOVEMENT OF PRECIP. AREA, CROSS CORR.

第5図 クロスコリレーションによって求めた雨域の移動径路.起点を02時15分の"雨域の重心"にとって図示してある.

規模)内部にはいくつかの積雲規模の強雨域があるが, 散在する最強雨量地点の数値が豪雨域全体の雨量の傾向 を代表するとは限らない.むしろ,中規模域の面積平均 雨量を尺度として採用すべきであろう.第6図は"雨域 の重心"を中心とする東西70km,南北50km (つまり 35格子)の面積平均雨量強度の時間変化を示す.

▶天気″26.1.

22

22

hour)の時間変化.

雨域の移動と雨量の時間的外挿の可能性

第4図,第5図の雨域の移動径路,第6図の面積雨量 強度の時間変化から,移動速度,雨量にはかなりの保存 性のあることがわかる.これは,積雲規模としてではな く中規模として現象を認識した場合の保存性であること を注意したい.この保存性は過去60~90分間の雨域の移 動と雨量の変化傾向に基づいて,60~90分間程度の将来 の雨域の移動と雨量を時間的に外挿できる可能性のある ことを暗示しているように思われる.

4. 雨域の移動についての考察

この節では解析方法から離れて,雨域の移動に関する 若干の考察を加える.

雨域の移動を上層風のステアリングによって説明ずけ る報告もあるが,このケースではこのような説明が可能 であろうか?豪雨域近くの4箇所の高層観測点(福岡, 熊本,鹿児島,および長崎の南南西約60kmの海上に 位置した啓風丸)について,平均した上層風のホドグラ フを第7図に掲げる.第4図および第5図の雨域の移動 速度と比較するために,風速は km/hour の単位で示し てある.

27日03時および09時とも,1000~700 mb 層では,南西~西南西風が吹き,600~400 mb 層では西~西北西風が吹いている。雨域の移動が上層風の風向に沿っていないことは明白である。それどころか,雨域は上層風に対してほぼ直角方向に(南南東に向かって)移動していることに注意したい。

図は省略するが、個々のレーダエコー(積雲規模)の 移動はほぼ 700 mb 風の風向と一致しているし、また、 レインバンド(第2図について説明した)の走向ともほ ぼ一致している.では、個々のエコーの移動と雨域(中 規模に認識した)の移動とはどのように関連ずけられる ものであろうか?

第7図 6月27日03時および09時における豪雨城周辺の4地点の平均高層風のホドグラフ.

第8図 02時30分~03時00分についてのレーダ補正 係数 CR の分布図.海岸付近で大きな補正 係数が分布していることに注意.

第2図で見たように、海上から東に伸びる雨域が九州 西岸または西岸に近い山地を横切る部分で降雨の極大が 現われている.これに関連して、レーダ補正係数の解析 値 *CR* (Appendix 参照)の分布を観察したい.第8図 はその一例として掲げた、02時30分~03時00分について の*CR* の分布である.(大きな *CR* は、標準の *Z*-*R* 関係 から与えられるレーダ雨量に比して実測雨量が大きいこ とを意味する.) レインバンドが海岸線あるいは山地を 越す部分で、大きな *CR* の数値が解析されたことは注目 される.

低気圧の東進に伴って前線が南下し, レインバンドも また南下した.したがって,レインバンドが海岸と交わ

1979年1月

第9図 06時00分~06時30分の降水強度分布図.

- (A) では $\sigma_0 = 0.1$, $\sigma_{grad} = 1.0/(10 \text{ km})$ を,
- (B) では $\sigma_0=0.1$, $\sigma_{grad}=0.5/(10 \text{ km})$ を,

(C) では $\sigma_0=0.1$, $\sigma_{grad}=0.25/(10 \text{ km})$ を,それぞれ使用して計算している.

る場所も南下した. これが雨域の中心(重心)がほぼ海 岸線に沿って南下した状況説明である.

すなわち、このケースの豪雨域の移動を現象的に説明 するためには、個々のエコーセルの発生と運動、その発 生をコントロールしている擾乱 (この場合、前線)、お よびエコーセルが最大の降水を放出する場所(前記した 特定な地点で大きなレーダ補正係数の現われたことは、 そこで標準の Z-R 関係から期待される以上の降雨がな にかの機構でもたらされたことを意味している)の三つ の要素がすべて説明されなければならない.

このケースの豪雨の場合には、したがって、ある時刻 のエコーを上層風で流すという時間外挿を行なったり、 ある時刻のレーダ補正係数を時間的に補外したりするだ けではこの豪雨域の移動を説明することは困難だと思わ れる*.前節で述べたように、このケースの豪雨の場合 にはむしろ個々のエコーセルを問題にすることをやめ、 中規模の強雨域の移動を補外することの方が、豪雨の監 視のためには実用的ではないかと筆者は考える.

5. 客観解析の対象とする豪雨のスケール

第3節では雨量分布の客観解析に基づいて中規模の豪 雨域の移動を解析した. どのようなケースの雨域を考察 の対象とするかは自明のことではない. 目的によること はいうまでもないが, 観測の時間空間密度, 現象のライ フタイム,現象についてのわれわれの知識によっても, 対象とする現象のスケールが決められる.(上記した条件で目的が制限される.)とくに最終的に予測を目的と している場合,予測時間よりも短かいライフタイムの現 象(しかも物理的過程の未知な)を解析の対象としても その意義は不明である.

第2図で示した雨量分布図も、どのくらいのスケール の雨域を解析するかをまず決めてから得られたものであ る.第2節で述べたように、レーダ補正係数の分布と雨 量分布を得るため2回の変分フィルターによる客観解析 が行なわれている.変分フィルター(Appendix 参照) では、解析値を観測値に近ずける制限(観測的制限)と 解析値の傾度を小さくする制限(平滑の制限)という、 相反する2種類の制限を与えている.この2種類の制限 のかね合いを決めるのが(A.8)(A.12)式の規準化 の係数 $\sigma_0^2 \geq \sigma_{grad}^2$ である.

直感的な説明をすれば σ_0^2 は、われわれが想定する解 析値の観測値に対する誤差の分散であり、 σ_{grad}^2 は、わ れわれが想定する解析値の傾度の分散である。すなわ ち、小さな σ_{grad}^2 と大きな σ_0^2 との組み合わせ(大きな ε と小さな α)は平滑化された解析結果を与え、逆に大 きな σ_{grad}^2 と小さな σ_0^2 との組み合わせ(小さな ε と大 さな α)はあまり 平滑化されない 解析値の分布を与え る.

何種類かの係数の組み合わせに対して得られた06時00 分~06時30分についての解析結果を例として第9図に掲 げる. (A) では $\sigma_0=0.1$, $\sigma_{grad}=1.0/(10 \text{ km})$, (B) では $\sigma_0=0.1$, $\sigma_{grad}=0.5/(10 \text{ km})$, (C) では $\sigma_0=0.1$,

24

^{*} 立平・牧野(1977) はレーダ雨量補正係数と予想 エコーパターン(これは上層風で運動学的にエコ ーパターンを流すことで求める)から,予想雨量 分布を得る方法を提案し,テストではある種の大 雨には好結果が得られたことを報告している.

 $\sigma_{grad} = 0.25/(10 \text{ km})$ をそれぞれ使用した.当然(C)は 最も平滑化された分布を与え,(A)は最も平滑の少な い分布を与えている.

第9図に関して「どの結果が正しいか?」という質問 は意味がない.3枚の図はそれぞれ要請されたスムーズ に適合した分布図なのであって,正誤の問題ではない.

われわれが問題とすべきことは、どの程度のスムーズが 豪雨の実況監視のために適当か、あるいは便利かという ことである。観測の密度、予報区域(行政区域)の広さ、 河川流域の広さ、豪雨のスケールとライフタイム、実況 監視にある人間の注意力の限界などを勘案すれば、あま りスポッティ(spotty)な雨量分布に目を向けることは 不適当で、(20 km)²~(30 km)²のスケールで全体を系 統的に把握することが必要だと筆者は考える。具体的に は(B)図が適当であろう。第2図も(B)と同一な係 数を使用して得られた結果である。

このようなスケールの雨量分布の客観解析はどのよう な意味があるだろうか?まず海上(ここでは補正係数の 問題があるが――第6節参照)でのレーダデータを併用 する点に利点がある.つぎに、レーダと雨量の分布をま とめて見る点に意味がある.さらにこの程度に平滑した 雨量パターンは、現在われわれの持つ他の情報(たとえ ば力学的予測のアウトプットなど)との対比において最 も適当であろう*.

6.討論

本報告では、レーダおよび雨量計観測網に基づく雨量 分布と雨域移動の客観解析の方法と実例を示したが、こ れに関するいくつかの問題点をさぐる.

海上のレーダ補正係数

この実例では研究観測データ(観測船・小島嶼の雨量 計データ)が使用できた。通常は海岸の観測データのみ しか使用できず,海上では補正なしでレーダ雨量を使わ ざるを得ない。海上と陸上の *Z-R* 関係の対比など基礎 的な情報が必要となろう。

海岸・山地での降水機構

レインバンドと海岸の交点でみられた大きなレーダ補 正係数はそこでの特殊な *Z-R* 関係(降水過程) を暗示 する.これに関する基礎的な知識が,より正確な解析へ の改善のために必要とされる. 入力データの改善

より密な等エコーレベルの観測,より短時間間隔のレ ーダ観測,より高い空間的分解能のデータなどの入力デ ータの改善が望まれる.これらの改善はこの解析手法の 本質的変更を必要としない.

入力データは密であることが望ましいが,出力データ は細かいことが良いわけではない.中規模現象としての 豪雨を対象とすれば,あまりに短時間(5分,10分)の 雨量分布図,細かな格子(1km,2km)上の出力は不 適当で,ある程度(第5節参照)平滑化された,30分間 隔,5~10km 間隔の出力の方が実用的だと考える.

7. むすび

著者が前報告(1978)で提案した, レーダ・雨量計デ ータに基づく雨量分布客観解析の方法を1972年6月27日 の九州の豪雨について使用して,連続した30分雨量分布 図を作った.またこの解析データから雨域の移動を客観 的に追跡した.解析によって見た雨域の移動について考 察を加えた.

降雨の実況監視のためにいろいろな解析方法が試みら れているが,この実例は本報告で提案した方法も有用で あることを示していると思われる.ディジタルレーダ資 料と地上自動観測網のデータが併用され,豪雨の実況監 視のシステムが進歩することを期待する.

謝 辞

本報告の作業の大部分は気象研究所予報研究部でなさ れた.データは第5次梅雨前線豪雨研究観測で得られた ものである.研究観測期間中,連続したレーダ観測を遂 行された 福岡管区気象台 石硯浩氏はじめ,背振山レー ダ観測班の方々に厚く謝意を表する.

Appendix

前報告(1978)と部分的に重複するが、本報告の説明 の必要上、解析の計算の概略を記す.

雨量計データの入力

各雨量計の 30 分平均雨量強度 PR_g (mm/hour) を降 雨強度スケール PS_g に換算する;

$$PS_g = \begin{cases} 0 & \cdots PR_g < 1\\ 1 + \log PR_g / \log 2 & \cdots PR_g \ge 1 \end{cases}$$
(A.1)

(この変換は *PRg* の大きな変動巾をさけるためである.) 雨量計を含む格子と含まぬ格子は,次の記号で区別す る;

$$\delta_g(i, j) = \begin{cases} 1 & \dots & \text{雨量計格子} \\ 0 & \dots & \text{雨量計のない格子} \end{cases}$$
 (A.2)

1979年1月

^{*} レーダによって,雨量観測網にさえかからない積 雲規模の強雨を解析しようとする研究も重要であ り,その進展を期待するが,これは本報告の対象 とするテーマではない.

レーダ観測データ入力

26

標準エコー強度階級一雨量強度の関係を使用し,30分 間隔について30分平均レーダ雨量強度 *PR*r (mm/hour) を求め、レーダ降雨強度スケール *PS*r に換算する;

$$PS_r = \begin{cases} 0 & \dots PR_r < 1\\ 1 + \log PR_r / \log 2 \dots PR_r \ge 1 \end{cases}$$
(A.3)

レーダデータのある格子とない格子は次の記号で区別す る;

$$\delta_{r}(i, j) = \begin{cases} 1 & \cdots & \nu - \varsigma 格子 \\ 0 & \cdots & \nu - \varsigma & \overline{\gamma} - \varsigma & 0 & \gamma \end{cases}$$
(A.4)

レーダ補正係数

レーダ補正係数 (radar calibration) の観測値 CR(i, j)j) は $\delta_g(i, j) \cdot \delta_r(i, j) = 1$ の格子で,

$$\widetilde{CR}(i, j) = PS_g(i, j) - PS_r(i, j)$$
(A.5)

によって求める.

レーダ補正係数の分布

レーダ補正係数 CR(i, j) の分布を与える変分フィル ターは、

$$\delta \sum_{i} \sum_{l} \left\{ \alpha (CR - C\tilde{R})^{2} + \epsilon \left[\left(\frac{\partial}{\partial x} CR \right)^{2} + \left(\frac{\partial}{\partial y} CR \right)^{2} \right] \right\} = 0$$
 (A. 6)

そのオイラー方程式は,

$$\alpha (CR - \widetilde{CR}) - \epsilon \left(\frac{\partial^2}{\partial x^2} CR + \frac{\partial^2}{\partial y^2} CR\right) = 0 \quad (A.7)$$

である.係数α,εは,

$$\begin{array}{l} \alpha = 1.0 \cdot \delta_g(i, j) \cdot \delta_r(i, j) / \sigma_0^2 \\ \varepsilon = 1.0 / \sigma_{\text{grad}}^2 \end{array} \right\}$$
(A.8)

である.

レーダ降雨強度スケールの補正

補正されたレーダ降雨強度スケール $PS_{r,e}(i, j)$ は得られた CR の分布から、 $\delta_r(i, j)=1$ の格子上で、

$$PS_{r,c}(i,j) = PS_{r}(i,j) + CR(i,j)$$
 (A.9)

によって与えられる.

$$\delta \sum_{i j} \left\{ \alpha_g (PS - PS_g)^2 + \alpha_r (PS - PS_r, c)^2 + \varepsilon \left[\left(-\frac{\partial}{\partial x} - PS \right)^2 + \left(-\frac{\partial}{\partial y} - PS \right)^2 \right] \right\} = 0$$
 (A. 10)

であり, そのオイラー方程式は,

$$\alpha_g(PS-PS_g) + \alpha_r(PS-PS_r, c)$$

$$-\varepsilon \left[\frac{\partial^2}{\partial x^2} PS + \frac{\partial^2}{\partial y^2} PS\right] = 0$$
 (A.11)

である. 係数 αg, αr および ε は,

$$\begin{array}{c} \alpha_g = 1.0 \cdot \delta_g(i, j) / \sigma_0^2 \\ \alpha_r = 1.0 \cdot \delta_r(i, j) / \sigma_0^2 \\ \varepsilon = 1.0 / \sigma_{\text{grad}}^2 \end{array} \right\}$$
(A.12)

である.

降雨強度への換算

得られた PS は (A.1) 式の逆算で,

$$PR(i,j) = \begin{cases} 0 & \dots PS = 0 \\ 2 (PS (i, j)^{-1}) & \dots PS \ge 1 \end{cases}$$
(A.13)

降雨強度 PS(mm/hour) に換算する.

文 献

- Barclay, P.A., and K.E. Wilk, 1970: Severe thunderstorm radar echo motion and related weather events hazardous to aviation operations, ESSA Tech. Memo. ERL. Nssl., 46.
- Barnes, S.L., 1964: A technique for maximizing details in numerical weather map analysis, J. Appl. Met., 3, 396-409.
- Battan, L. J., 1973: Radar observation of the atmosphere, Univ of Chicago Press, 324 pp.
- Brandes, E.A., 1975: Optimizing rainfall estimates with the aid of radar, J. Appl. Met., 14, 1339-1345.
- and D. Sirmans, 1976: Convective rainfall estimation by radar — Experimental results and proposed operational analysis technique—, Reprint Volume of Conference on Hydrometeorology, Ame. Met. Soc., 54-59.
- Joss, J., and Waldvogel, 1970: A method to improve the accuracy of radar measured amounts of precipitation, Proc. 14th Radar Met. Conf., 237-238.
- Leese, J.A., and C.S. Novak, 1972: An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation, J Appl. Met., 10, 118-132.
- Merritt, L.P., K.E. Wilk and M.L. Weible, 1974: Severe rainstorm at Enid, Oklahoma, October 10, 1973, NOAA Tech. Memo. ERL. NSSL, 73.
- Ninomiya, K., and T. Akiyama, 1978: Objective analysis of heavy rainfalls based on radar and gauge measurements, J. Met. Soc. Japan, 56, 206-210.
- Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis, Mon. Wea. Rev., 98, 875-883.
- 立平良三, 牧野義久, 1977: 短時間雨量予報の技術 開発, 昭和51年度全国予報技術検討会資料(気象 庁予報部), 61-68.
- Wilson, J. W., 1970: Integration of radar and raingauge data for improved rainfall measurement, J. Appl. Met., 9, 489-497,