北海道西岸に出現した小低気圧の解析*

彦*** 勝*** 八木 IF. 允** 銉 Ħ 紀 Ħ 前 由 夫**** 明**** 鴨志田 童*** 地 弘 Ħ 中 康 菊 尚**** 中 島

要旨

1971年2月24日,発達した低気圧の後面流域内にあたる北海道西岸地方で,強い対流性の弧状エコーが観測された。解析の結果,小低気圧の存在がはっきりと確かめられ,この小低気圧について,次の事柄が明らかになった。

(1) 気圧資料の解析によると、小低気圧の直径は約80km である。(2) 小低気圧の中心と一般場との地上 気圧差は-3mb で、地上の気圧分布はかなり鋭い漏戸状の形をしている。(3) 小低気圧の地上気温は周囲 より低い。(4) 小低気圧に対応して、地上風の強い収束域がある。しかし、この強い収束域は、小低気圧の進 行方向に向かってその前面と後面とでは対称的でなくて、やや後面に片寄っている。弧状のエコーも、これに 対応しているものと思われる。(5) 洋上での生成期を過ぎたあとの小低気圧の移動速度は、対流圈下層(850 mb) の一般流の速度によく一致している。

1. はじめに

北海道西岸地方に大雪が降る時の気圧配置は,大別す ると次の三つの型に分けられる.

(1) 低気圧型 (2) 季節風型 (3) 小低気圧型

ここでいう小低気圧とは、多くの場合、局地天気図な どで等圧線を引いてみても、まわりよりせいぜい1~2 mb 低い閉曲線がかける程度の、ごく小規模で、低気圧 性の風系を伴っている低圧部を指している.この小低気 圧のもっとも特徴的なことは、強い対流性の弧状または 渦状のエコーを伴っていて、しばしば局地的な大雪をも たらすことである.しかし一方では、このような局地的 な大雪に対して、小低気圧は副次的なものとする説や、 その存在を疑問視する向きもないではない.

北海道西岸地方の小低気圧の研究のレビューとして

- * Analysis of Small Scale Low in the West Coast of Hokkaido.
- ** S. Yagi, 気象研究所.
- *** T. Yoshida, N. Maeda, A. Kamoshida, 気 象衛星センター.
- **** Y. Tanaka, 気象庁予報部.
- ***** H. Kikuchi, T. Nakajima, 札幌管区気象合. —1978年9月4日 受領— —1978年12月25日 受理—

は,八木 (1972) がある.

北海道西岸地方に見られる小低気圧の発生機構や小低 気圧型の大雪の原因については、これまで、それぞれの 解析例とともに、次に示すような、いくつかの説が提出 されている.

(1) 小低気圧とは,放射冷却によってできた北海道の 内陸高気圧に相対的な気圧の谷であるとする説(石井・ 武石,1953).あるいは,小低気圧とは,この相対的な 気圧の谷に向かう内陸からの寒気の吹き出しと季節風と の間にできた不連続線上に発生した低気圧であるという 説(長谷川,1949).

(2)大雪の原因を小低気圧としてとらえるよりも,む しろ,内陸高気圧からの寒気の吹き出しと海上からの季 節風との間の不連続線(石狩不連続線)としてとらえる 説(河村,1961;荒川,1963).

(3)(1)や(2)の考え方をもっと広域に拡張した説. すなわち,冬期は,北海道,樺太およびオホーツク海氷 原が一体となって,(2)の場合よりももっと範囲の広い 内陸高気圧を生成する.それからの寒気の吹き出しと季 節風との間にできる風の収束帯が,間宮海峡から北海道 西岸にかけて存在し,これに対応してできた収束雲の南 端で,弧状に曲がったところが小低気圧にあたるとする 説(岡林,1969a,b).あるいは,収束雲中に波動状に いくつかの小低気圧が できるとする説(岡林・里見, 1971;孫野, 1971).

(4) 上層の谷や寒冷渦に対応して小低気圧が顕在化す るとする説(杉中, 1964)。

以上,(1)から(4)までに述べた現象は、おもに季節 風タイプの気圧配置がややゆるんだ時に多く、シノプテ ィック・スケールの低気圧とは直接にはあまり関係がな い(タイプ I).しかし、発達した低気圧の後面流の中 で出現する小低気圧も見られる(タイプ II).このよう な例について、

(5) 斉藤ほか(1968)は、小低気圧というイメージで 降雪機構を考えるのは誤まりであるとして、局地的豪雪 をもたらすのは、主低気圧後面の流れの場における暖湿 気流の集中化であり、小低気圧は暖湿気流の収束する場 (低圧帯)を示すと考えるべきだとしている。

また,村松ほか(1975)は,前記のタイプ↓とタイプ Ⅱのそれぞれについて,解析例を示している。

今回,筆者らが解析した小低気圧は,大雪というほど にならなかったが,タイプとしては,前記のタイプ []に 属するものである.

解析の主眼点は、小低気圧のじょう乱としての存在を 明確にすることであり、さらに、その水平構造について のいくつかの解析結果を示す.また、最後に、小低気圧 の生成機構について、一つの推論を示す.

第1図 地上天気図(1971年2月24日09時). 矢印 は小低気圧の位置を示す.

第2図 850mb 天気図 (1971年2月24日09時).

第3図 500mb 天気図 (1971年2月24日09時)。

なお,地上気圧の観測網を密にするため,あらかじめ 石狩平野内の3ヵ所に日巻の自記気圧計を臨時に配置し ておいた.

概況;小低気圧が出現するまでの総観スケールでの状況

第1図は、1971年2月24日09時の地上天気図である. 小低気圧は、この極東範囲の天気図には描かれていない が、すでにこのときには、低気圧の後面流域にあたる北 海道西岸(第1図において矢印で示された位置)に存在 しており、その様子は、第4図(a)の北海道地方の局地 天気図に示されている。写真1は、同時刻の札幌レーダ のエコー写真であるが、小低気圧の南西半分にあたると

ころに,強い対流性の渦状エコーが見られる.後述する ように,この小低気圧は内陸地方に移動して 消滅 した が,その通路となった地方では,短時間に 10~20cm の 降雪があった(第7図と第11図参照).

この小低気圧が出現するまでの総観スケールでの状況 は、次の通りである.

第1図に示すように、低気圧が発達しながら日本海を 北東進して23日15時には津軽海峡の西に達し、その後23 日18時には、地上低気圧の一部は北海道西岸で閉塞して 急速に衰え、低気圧の主力は津軽海峡の東の閉塞点にで きた低気圧に移った。この閉塞点にできた低気圧は、さ らに発達を続けながら、北海道の東沖を通って、翌24日 09時には閉塞してオホーツク海に抜けた。この間の地上 の低気圧の発達量は、24時間に20mb 以上にもなる。

24日09時,北海道西岸地方は,850mb 面ではこの発達した主低気圧の後面の循環内にあり,とくに稚内と札幌の間では風向の変化が著しい(第2図). また,500mb 面では,すでにコールド・ボルテックスの南東縁に入り,風の水平シアーは大きい(第3図).

このようにシノプティック・スケールでみても,北海 道西岸地方一帯は,大きな正のうず度場内に入っている.

る. 局地天気図およびレーダエコーの状況,衛星写真の状況

すでに述べたように、23日21時には、北海道西岸沖に 閉塞した低気圧が存在する(第1図).このときの札幌 のレーダでは、西岸地方一帯に、高さが3~4km で強 さが並以下の層状エコーが観測されている.この低気圧 は、局地天気図で見る限りは、その後急速に衰えて、24 日00時ごろまでには消滅してしまったように見える.そ れにかわって24日03時ごろには、西岸沖に小低気圧が 出現した.

この場合,閉塞した低気圧がある過程を経て,小低気 圧化した可能性も全く考えられないわけではない.たと えば,閉塞した低気圧が消滅したように見えるが,なお 何らかの痕跡が残っており,それが基になって,新たに 一般場の変化に伴って小低気圧が顕在化した場合などが 考えられる.しかしながらほんとうのところは,その位

10,000

24, Feb ?71

(c) (c) (d) (d) Local surface weather charts

Local surface weather charts

第4図 局地天気図。(a)1971年2月24日09時,(b)同日09時30分,(c)同日10時,(d)同日10時30分。

1979年2月

北海道西岸に出現した小低気圧の解析

置が洋上であるため観測資料が不足していること,およ び深夜のレーダ観測資料がないことなどの理由で,明確 ではない.

いずれにしてもここでは、閉塞した低気圧と小低気圧 を次のような点から区別して考えたいと思う.

(1) 規模の大小, すなわち, シノプティック・スケー ルの天気図などで明瞭に検出できるかどうか.

(2) レーダエコーがおもに層状であるか,活発な対流 性であるか.

(3) シノプティック・スケールの温帯性低気圧に近い 構造と特徴を持っているか,あるいは中小規模じょう乱 としての特徴的な性質を持っているか.

24日09時の局地天気図(第4図a)では、小低気圧は 内陸に 侵入し 始めている. このときのレーダ エコー図

(写真1)では、小低気圧の後面には3本の腕をもった 弧状の強い対流性のエコーがあり、その高さは3~4.5km にも及んでいる。また、そのときの気象衛星写真を写真 7(a)に示してある。このとき(24日09時)までの北海 道各地の天気分布の推移は雪ないし曇りであって、この 小低気圧が「放射冷却によってできた内陸高気圧に相対 的な小低気圧」(長谷川,1949;石井・武石,1953)と は別の種類のものである可能性が強いことを示してい る。その後、この小低気圧は南東~東南東に進み、10時 30分ごろには、これらの局地天気図上では一見消滅して しまったかのように見える。しかしまだ、11時のレーダ エコー図(写真2)では、小低気圧の移動に伴って、弧

写真1 札幌レーダのエコー写真. 1971年2月24日 09時00分. EL 0.7°, レンジ・マークは50 km ごと,破線は等ビーム高度線を示す (以下写真6まで同じ). 矢印は弧状エコ ーの腕を示す.

写真 2 1971年 2 月24日11時00分. EL 0.5°, レン ジ・マークは20km ごと.

写真3 1971年2月24日13時00分. EL 0.5°, レン ジ・マークは20km ごと.

写真4 1971年2月24日14時00分. EL 0.5°, レン ジ・マークは20km ごと.

◎天気″ 26. 2.

写真5 1971年2月24日15時02分. EL 0.5°, レン ジ・マークは20km ごと.

写真 6 1971年 2 月24日21時01分. EL 0.6°, レン ジ・マークは20km ごと。

写真7 気象衛星写真. (a)1971年2月24日09時16分, (b)1971年2月25日10時08分.

状の部分が内陸に侵入している様子がうかがえる.

写真2から6までのレーダエコー写真は、小低気圧が 内陸に侵入してから場が完全に季節風パターンに変わる までの間の特徴的な段階をそれぞれ示している. 積雲対 流の分野で風のシアーと関連づけて問題にされるような 各種の典型的な形状のエコーが、わずか数時間のうちに 次々に出現していることは興味深い. すなわち、

(1) 12時~13時には,弧状エコーのなごりは内陸部にあり,海上ではセル状のエコーが一様に散在(写真3).

(3) その後,風向にほぼ直交した細いバンド状のエコ ーが無数に出現(写真4).

(3) 15時ごろには,風向に沿った北西走向の太いバン 1979年2月 ド状のエコーが形成され,さきの風向に直交する細い、 ンド状のエコーは,この太いバンド状エコーから垂直に 伸びる枝の形で残った(写真5).

(4) 石狩湾に入り込んでいた北西方向のバンド状エコーは、16時ごろより北上し始め、石狩湾には新たに東西 走向のバンド状エコーが形成された(写真6).

これら(1)から(4)までの特徴的な過程は,低気圧の すぐ後面で出現するような小低気圧についての他の例 (1971年12月7日)でも見られる.写真7の(b)は翌25日 10時の気象衛星写真であるが,雲の様子は完全に東西走 向の季節風パターンに変わっている.

これら小低気圧が出現した前後のレーダエコーの推移

と気象衛星写真は、この種の小低気圧の出現が発達した 主低気圧の通過後から季節風の吹き出しが始まる前まて の間であること、また、この種の小低気圧が「間宮海峡 から伸びる一本の収束雲の南端にできた弧状雲に対応す るもの(岡林、1969、1971)」とは少なくとも別の種類 のものであることを示している。

なお、これまでに使用してきた局地天気図の等圧線を 引くにあたって、定時観測以外の気圧は、気象台、測候 所および燈台の日巻自記気圧計から読み取った値に補正 をしたものを使っている。気圧の器差補正と海面更正 は、定時観測におけるフォルタン型気圧計の値との差と 海面更正値を時間的に内挿して用いている。海面更正値 を時間的に内挿したために生じる誤差は、せいぜい 0.1 mb である。通報所(週巻自記気圧計)および臨時観測 点(石狩地方に3ヶ所、日巻自記気圧計を設置)の気圧 は、絶対値そのものを使うことに精度上疑問 が ある の で、使用していない。しかし次節に示すように、これら 通報所および臨時観測点の気圧値をもうまく使えば、小 低気圧をもっと内陸まで追跡することができる。

4. 小低気圧の移動およびその水平構造について

4.1. 小低気圧の移動についてのより詳細な議論

第6図の(a)と(b)は、小低気圧が存在した前後の期間の各地の気圧の記録紙であり、参考までにところどころ風のデータも付記してある.24日04時以後は、気圧の

第5図 気象観測点(○印:気圧計あり,●印:気 圧計なし),等高線は500mごと.

一般場としては,発達した低気圧の通過後であるため, 上昇傾向にある.しかしその中で,小低気圧が通過した ために起こったと思われる気圧の下降 部分(第6図の (a)と(b)において↓印で示した部分)がはっきりと現 われており,かつその出現時間は内陸に入るほど遅くな っている(観測点の位置は第5図に示す).

第7図は,小低気圧の移動経路を示している.移動経 路は次の二つの方法によって決めてあるが,結果的には 両者に大きな差はない.

(1)気圧を使う方法;小低気圧通過による各地の気圧 極小値の出現時間から,その等時線を求める(第7図中 の細実線).また,各観測点における小低気圧通過時の 気圧極小値と通過前の気圧極大値(これは一般場の気圧 とみなせる)との差を求める.以下,これをその観測点 における一般場からの最大気圧偏差と呼ぶことにする. 小低気圧が近くを通過した観測点ほど,一般場からの最 大気圧偏差に大きい.したがって,この一般場からの最 大気圧偏差の等値線を引き,先に求めた等時線上で一般 場からの気圧偏差の最大点を求めて,これをその時間に おける小低気圧の中心の位置とする.

(2) レーダエコーを使う方法;レーダエコー図から台 風の中心を決める際に使用する透明対数らせん図盤を用 いて,弧状のレーダエコーの中心を求め,これを小低気 圧の中心とする.ただしこの方法では,レーダエコーが あまり内陸に入り過ぎるとエコーパターンが崩れるた め,中心の決定が困難になる.この方法によって求めた 小低気圧の中心の位置は,第7図において×印で示して ある.もちろん,このような小さな低気圧に対して対数 ら線を適用してよいか疑問もあろうが,結果的には(1) との差異はなかった.

さて、第7図によると、小低気圧は、初め南東の方向 に約 30km/hour の速さで移動し、その後急速に弱ま り ながら、向きをほぼ東に変え、速さをやや増 して 約 50 km/hour で移動していった.

第1表は,第7図より求めた小低気圧の実際の移動速 度と,対流圏下部の一般流で小低気圧を流した場合の速 度との比較を示している.一般流を求めるために,ここ では限定された狭い領域の風の場の空間分布が位置座標 の1次関数で表わされ,さらにまたその時間変化が時間 の1次関数で表わされることを仮定している.これらの 関数を決定するために,札幌,稚内,根室の3地点にお ける24日03時,09時,15時,の高層風実測値を使用して いる.これらの3地点が小低気圧の経路からは離れてお

▶天気/ 26. 2.

第6図 気圧計の自記紙(矢印は小低気圧の通過による気圧の下がりを示す). なお, ところどころ対応する時刻の風の矢羽を入れてある.(a)週巻,(b)日巻.

り、小低気圧自身の影響を受けにくいということは、そ れらの地点のデータを使って一般流を求めるのに好都合 である.第1表によると、小低気圧が洋上にあった段階 (24日08時ごろまで)では、小低気圧の移動方向は一般 流の向きとあまり一致していないし、速さも遅い.しか し、小低気圧が上陸して衰弱期に入ると (24日09時以 降)、その移動速度は、一般流(特に850mb 面の)で流 した場合の速度にほぼ一致してきている.このことは、 小低気圧の顕在化と持続には、一般場の条件のほかに地 形的な効果や海上からの熱の補給が密接に関係している ことを示唆している.

4.2. 小低気圧の水平方向の気圧構造

第8図の(a)と(b)は,小低気圧の水平方向の気圧構 造を,次に示す2通りの方法でそれぞれ独立に求めたも

(a)

(b)

Track of the small scale low

第7図 小低気圧の経路図と最大気圧偏差.

のである.いずれも時間空間変換をほどこしたものである.

(1) 第8図の(a)は,各観測点において,小低気圧が 最も近づいたとき(気圧極小時)の小低気圧中心までの 距離と一般場からの気圧偏差(第6図に示した最大気圧 偏差)を,それぞれ横軸,縦軸にとって,小低気圧の水 平方向の気圧分布を求めている.なお,小低気圧は,ほ ぼ円形であることを仮定している.また,あまり内陸部 の観測点は,小低気圧の衰弱の問題もあるので使用して いない.

(2) 第8図の(b)は,小低気圧のほぼ中心が通過した と思われる滝川通報所の気圧変化を使って,小低気圧の 気圧構造を求めている.すなわち,先に作成した小低気 圧の経路図(第7図)によって,各時間における滝川か ら小低気圧中心までの距離を求めておき,一方,滝川の 気圧記録から,これらの各時間に対する一般場からの気 圧偏差を求めて,それぞれを横軸,縦軸にとっている. なお,滝川通報所には,常設の週巻気圧計のほかに,臨 時に日巻の自記気圧計を設置していたので,気圧は日巻 のものを使用した.また,滝川における気圧偏差を求め るときの気圧の一般場の値は,すでに述べたように,滝 川における小低気圧通過前の気圧極大値を使用してい る.このことは,小低気圧通過後の一般場の気圧は通過 前の一般場の気圧よりやや高いはずであるので,若干の 誤差を含む.小低気圧の直径が第8図(a)に比べて,や や小さいことの原因の一つでもあろう.

第8図(a)(b)はどちらも,尖鋭な漏戸状の型をして いる.それは,総観スケールの低気圧の気圧分布とは明 らかに異なり,むしろ,トルネードや台風に似た気圧分 布をしている.小低気圧の水平スケールは直径にして70 ~90km ぐらいで,これは,予報現業者がたまたま局地 天気図などでとらえる小低気圧の大きさとほぼ一致して いる.

4.3. 地上気温の分布

第9図は,各観測点における地上気温のなまの値と, 30分毎の5項移動平均したものとの差が,一0.4°C以下 の領域を追跡したものである.移動平均からの偏差をと った理由は,絶対値そのものの誤差の問題を避けるため と,3時間以内での短周期の気温の変化を明瞭にするた めである.第9図において,各時間の一0.4°C以下の領 域には必ず3点以上の観測点が含まれている.

小低気圧は,だいたい,地上気温の負の偏差領域に対 応している.しかし,弧状のレーダエコーの部分と地上

時間(JST)		24日07時	08時	09時	11時	11時30分
小低気圧の実際の移動速度 (km/hour)		165° 26	145° 32	120° 32	105° 52	95° 52
各気圧面の一般流 で小低気圧を流し た場合の移動速度 (km/hour)	850 mb	130° 38	125° 37	120° 40	100° 52	95° 52
	800 mb	110° 57	115° 66	105° 68	95° 63	90° 62
	700 mb	105° 47	115° 42	125° 27	110° 37	105° 32
小低気圧に伴うレーダエコー 頂の高さ(km)				4	3.5	3.5

第1表 小低気圧の実際の移動速度と小低気圧を対流圏下層 の一般流で流した場合の移動速度との比較

▶天気″26.2.

第8図 小低気圧の水平方向の気圧分布図.(a)各観測点における気圧の極小値を使っ て時間空間変換したもの,(b)滝川の気圧変化を時間空間変換したもの.

第9図 地上の気温偏差(30分ごとの5項移動平均 を行なった値からの偏差)が-0.4°C以下 の領域の移動、×印はそれぞれの時刻にお ける小低気圧中心の位置。

気温の対応などの細かいところは、さらに検討を要する. なお、各地とも小低気圧の通過後3~4時間して、本

格的な季節風の吹き出しに対応したさらに強い寒気の侵 入が見られる.

4.4. 地上風の発散域と降水域の移動

第10図は、第5図に示した六つの三角形の領域におけ

る地上実測風の発散の時間変化を示している.これらの 三角形は,小低気圧内の収束発散の分布を正確に論ずる には大きすぎる.当時,気象庁の農業気象観測所の風測 器の切換時にあたっていたため,これ以上の細かい観測 点の資料は残念ながら得られない.したがって,ここで は,次の2点に着目する.

(1)小低気圧の移動に伴って収束域の移動が対応する かどうか,(2)収束域の中心が小低気圧の中心に対して 進行方向前面にずれているか後面にずれているか.

また,地上の実測風は地形の影響を受けていると思わ れるが,はっきりとした組織的なじょう乱の場合にはそ れらを使っての発散解析も第10図に示すように,無意味 なものではない.

第10図によると、収束域の移動は、小低気圧の移動に よく対応している(図中の矢印は、小低気圧の中心付近 が通過した時刻を示している). 収束域は、小低気 圧の 進行方向に対して前面と後面では対称的な 分布 では な く、小低気圧の中心よりやや前面から広く後面にかけて あり、後面の方に片寄った分布をしている. 弧状のエコ ーも、これに対応しているものと思われる. 発散の大き さは10⁻⁴sec⁻¹ のオーダであり、中小規模じょう乱の特 徴的な大きさと一致している.

また,第11図は,降水量2mm/hour 以上の領域を追跡したものであるが,これも小低気圧の移動と対応して

1979年2月

第10図 地上風の発散の時間変化.計算領域は第5 図に示した三角形.↓印は小低気圧の中心 付近が通過した時刻.

いる.小低気圧が中央山岳部を越えて,その残骸が帯広 に一番接近したのは13時ごろと思われるが,当日の帯広 測候所の観測野帳によると,13時25分より降雪(苓)が始 まったことが記録されている.

5.まとめ

これまでの解析結果は、次の通りである.

(1) 北海道西岸地方の大雪と関連して,小低気圧の存 在がしばしば論議されてきたが,ある種の小低気圧 発達した低気圧の通過後,その後面流域に出現する小低 気圧——は確かに存在する.この種の小低気圧の存在期 間は,北海道西岸地方が低気圧の後面流域に入った時か ら季節風パターンに移るまでの,比較的短時間の間であ

第11図 降水域(2mm/hour 以上)の移動

る.

(2) 今回解析した小低気圧の特徴をあげれば,

(i)水平方向の大きさは、直径70~90km である.

(ii)地上の気圧分布は、尖鋭な漏戸状の形をしている。それは、総観スケールの低気圧の気圧分布とは異なり、むしろトルネードや台風の気圧分布に似ている。中心とその周囲の一般場との気圧差は約3mbである(以上、第8図参照).

(iii)小低気圧内の地上気温は周囲より低いが,弧状エ コーと気温などの細かい部分の対応は,さらに検討を要 する(第9図参照).

なお、小低気圧の中心付近の地上気温が周りに比べて 低いという解析例はいままでに報告されていないが、し かし実験例としては、山崎(1975)によって報告されて いる.

(iv)地上の流れの場では、小低気圧の中心より進行方 向やや前面から広く後面にかけて、非対称的に、強い収 束域(大きさ10⁻⁴sec⁻¹のオーダ)がある(第10図参照).

(v)この強い収束域に対応して,弧状の強い対流性エ コーがある。その高さは 3~4.5km であって,季節風 下で見られる通常のエコーより高い.

(vi)小低気圧は,はじめ洋上にほぼ停滞しているよう であるが,その後移動して内陸部に入り衰弱している. 移動の方向は下層(850mb)の一般流の方向にほぼ一 致,速さも最終的には850mbの一般流の速さとほぼ一 致する(第7図と第1表参照).

◎天気/ 26. 2.

さて、これまで、ここで解析した小低気圧の発生機構 については、ほとんど議論してこなかった。上にまとめ た解析結果は、発生機構を論ずるにはあまりにも不充分 である。しかし、この解析結果に反しない範囲で、可能 性のある一つの推論を最後に述べておきたい。 もちろ ん、他にも可能性のある推論はできるかもしれない.

(1) 2節で述べたように,北海道西岸地方の流れの一 般場は,500mb 以下のすべての層でかなり大きな 正の うず度場となっている.このことは,一般場としての条 件の一つであろう.第2の条件は,一般場の中層以下の 大気の静的安定度が,通常の場合よりは,より不安定に 近い状態にあるということであろう.ちなみに,静的安 定度の目安として900mb と500mb の気温差をとると, 24日09時は稚内では29.9°C(同年の月平均は25.0°C), 札幌では27.4°C(同年の月平均は24.5°C)である.

(2)(1)で述べた一般場の条件のほかに,小低気圧発 生の引き金作用として,局所的に北海道西岸沖の下層 に,低気圧性の循環が存在したのではなかろうか.この 場合考えられることは,閉塞した低気圧が完全には消滅 せずに残っていたのか,あるいは,下層の流れの場の中 に,地形的な影響で局所的に他より強い低気圧性循環が できたのではなかろうか.

(3) さらに,積雲対流の効果がスピン・アップをもた らして,小低気圧が鋭い漏戸状の地上気圧分布をもつま でに,顕在化したのではないだろうか.この段階では,大 気に比べ,相対的に暖かい海洋は必須の条件であろう.

(4) 一般場の変化(季節風パターンの到来) ととも に、小低気圧はその維持機構を奪われて、下層風に流さ れて上陸し、消滅したのであろう.

6. おわりに

この論文は,札幌冬期オリンピック(1972年)の前後 に札幌管区気象台に勤務していた,当時の若手有志の野 外観測の資料に基づいている.

この原稿に目を通され,助言して下さった,気象大学 校の荒川正一助教授と相原正彦教授,気象庁電子計算室 の新田尚博士に感謝いたします.また,資料収集に御協 力いただいた札幌管区気象台の陳岡富二男技術専門官に 感謝いたします.

文 献

- 売川正一,1963:石狩不連続線に関する中規模解析, 石狩平野の局地的大雪調査報告,札幌 管 区 気 象 合,127-139.
- 長谷川徳太郎, 1949: 北海道西岸に発生する副低気 圧について,研究時報, 1, 207-300.
- 石井幸男, 武石良雄, 1953: 内陸の冷気塊と沿岸の 小低気圧について, 研究時報, 5, 782-785.
- 河村 武, 1961: 北海道における冬期の降水分布の 総観気候学的考察,地理学評論, 34, 583-595.
- Magono, C., 1971: On the Localization Phenomena of Snowfall, J. Met. Soc., II, 49, Special Issue, 824-835.
- 元木敏博, 1974: 石狩平野で発生した小さなうず状 エコーについて, 天気, 21, 245-250.
- 村松照男,小倉士郎,小林尚治,1975:北海道西海 岸小低気圧型の大雪,天気,22,319-379.
- 岡林俊雄,1969a:昭和44年1月上旬の日本海大雪 のときの気象衛星写真,天気,16,79-80,同質 疑応答,天気,16,237-238.
- ———, 1969 b: 気象衛星からみた収束帯状雲と 小低気圧との関係, 天気, 16, 371-372.
- _____, 里見 穂, 1971: レーダと気象衛星によ る雪雲の研究(1), 天気, 18, 573-581.
- 杉中誠一,1964:北海道西岸地方の小低気圧と局地 的豪雪,天気,11,183-188.
- 斉藤 実他, 1968: 北海道石狩湾付近の降雪のレー ダ解析, 天気, 15, 42-50.
- 山口勝輔,孫野長治,1974:冬期日本海上における メソスケール前線上の渦状擾乱について,天気, 21,83-88,
- 八木正允, 1972: 北海道西岸の小低気圧(1), 大気, 7, 45-54.
- 山崎 武, 1975: 冬の低気圧に関するシンボジウム 報告,室内実験における渦巻発生の条件からみた 石狩湾小低気圧の発生条件,天気, 22, 181-183.