1979年7月

Vol. 26, No. 7.

551:509.61

発電施設からの熱放出が大気に及ぼす影響*

茐 泚 雄**

1. はじめに

発電所で電気エネルギーをつくるときの効率は、ほぼ 1/3 と言われている。 火力発電の場合には、石油または 石炭の燃焼によって発生する熱エネルギーを、原子力発 電の場合には,核分裂によって発生する熱エネルギーを 電気エネルギーに変えているわけであるが、その際、電 気エネルギーに変わるのは発生熱量の1/3で、残りの 2/3 の熱量は冷却水によって除去される. たとえば, 典 型的な 1,000 MW の電力を作っている発電所では2,000 MW の熱の除去が必要である.

この除去された熱は、結局は大気へ放出されるわけで あるが, その放出には, 現在三つの方法が使 わ れてい る. 第1の方法は,熱を奪った冷却水をそのまま海中へ 放出する方法である。この場合、温排水とまわりの海水 との混合の程度にもよるが、通常、温排水とまわりの海 水との温度差は10分の数度といわれており、温排水のた めに海面から大気へ放出される単位面積当たりの熱量の 増加は小さい. したがって, この熱量の増加によって大 気が直ちに影響を受けるということはない. すなわち, 発電の際の余剰熱を海中へ放出する方法は大気への影響 をやわらげているといえる.しかし,海中の動植物へ与 える影響は問題となる。

第2の方法は、熱を奪った冷却水を冷却池へ放出する 方法である。冷却池へ排出された温水は、池を通過する 間に大気へ熱を放出して冷え、再び冷却水として使われ る. この場合,冷却池の水面と大気の間に大きな温度差 ができやすい.たとえば,アメリカ,アリゾナ州のフォー・ コーナーズ発電所にある約 5 km² の冷却池では, 冬期,

* Atmospheric effects of heat release at large power plants.

水面と大気の温度差が 40°C 近くにも達 することがあ る (Currier et al., 1974). この結果, 冷却池の上に, し ばしば蒸発霧が発生し、風下へと流され、時には、それ が層雲に変わったりする。

第3の方法は,熱を奪った冷却水を冷却塔を使って冷 やす方法である。冷却塔については次節で詳述するが、 ごく簡単にいうと、冷却塔は太い煙突で、口径は 10 m~ 80 m あり, 温水はその側面を流れていて, ちょうど, 自 動車のエンジン冷却水を冷やすときのように、外気が冷 却塔の側面から中へ取り込まれるとき温水から熱を取り 去り, 暖まった空気は冷却塔の口からプルーム (plume) として放出される. この場合プルームが凝結を起こすと 目に見えるプルームとなり、さらには、雲の形成へと結 びつく.この結果,地表に到達する日射量の減衰や,降 水量の増大を引き起こして、発電所周辺の天候に影響を 及ぼす.

わが国では、余剰熱を除去するため、温水の海中放出 の方法がとられているので、周辺の大気へ与える熱の影 響は問題になっていないが,アメリカでは,主に,余剰 熱の除去に冷却塔が用いられているので,熱放出の周辺 大気に与える影響が問題になっている. もちろん, 一つ の発電所だけの影響を考えると、それほど大きなもので はないであろう. しかし, アメリカでは, エネルギー需 要の増大を補うための発電所の増設に関して、発電所団 地の建設、すなわち、ある地域に多くの発電所を集中し て作るという構想のもとに計画を進めている. この発電 所団地の総発電量は 10,000 MW~50,000 MW を予定 しているから,余剰熱の放出は 20,000 MW~100,000 MWにも及ぶ。一つの発電所の熱放出量に比べ、1~2 桁大きい値で, このエネルギーが 5~100 km² の面積か ら放出される。これは、自然界のメソ現象と同程度のエ

^{**} Y. Kikuchi, 気象研究所応用気象研究部.

ネルギー放出で、大気への影響も大きいと考えられる. このようなわけで、アメリカでは、冷却塔からの熱放出 が大気に及ぼす影響を明らかにする研究が求められてお り、すでに、かなり以前からこれに関する研究が始めら れている.

筆者は,昨年,第4回日米大気汚染気象委員会に出席 する機会を与えられ、会議の中で、アメリカで行なわれ ているこの問題についての研究の紹介があり、非常に與 味を感じた。たまたま,天気の編集部より,日米大気汚染 気象委員会に関連したトピックスの執筆を依頼されたの で、日本ではあまり行なわれていない研究ではあるが、 今後、人工熱の放出に伴う局地的な気候や天候の改変に 関する研究と結びつくと思われるので、その現状を紹介 することにした.

冷却塔からの熱放出が大気に与える影響として問題に なっているのは、プルームが凝結して目に見えるように なること, 雲の形成, 霧の発生, 降水量の増加等 であ り、また、熱放出に伴って冷却塔から排出される水滴の 沈着も問題になっている。以下では、まず、冷却塔の説 明をした後、以上の問題について、順次、観測事実とそ の予測法を主体に述べることにする. 最後に, 発電所団 地が及ぼす影響にふれることにしよう.

筆者は、この問題に精通しているわけではないので不 充分な紹介になると思うが、いたらない所は参考文献で 補っていただきたい。

2. 冷却塔

発電所で電気エネルギーを作り出すときの余剰熱は冷 却水の循環を通して除去されるが、冷却塔は、余剰熱を 吸収した温水を冷却する装置である.

冷却塔は,温水の冷却方法によって,湿潤冷却塔(wet cooling tower) と乾燥冷却塔 (dry cooling tower) と

温水の入口 ▦膨 -空気の入口 * の 出 口 回収冷却水 温水の水滴化装置 水滴除去装置

に分類できる。さらに、その各々は、通風の方法によっ て, 自然诵風冷却塔 (natural draft cooling tower) と 機械通風冷却塔 (mechanical draft cooling tower) と に分けることができる.

第2.1 図は、自然通風湿潤冷却塔の説明用断面図であ る. 冷却塔に流入した温水は、水滴化装置を流れ落ちる とき無数の水滴となり、冷却塔の下方側面から流入した 空気はこれら水滴の間を通り抜ける.

このとき、水滴は蒸発や伝導によって熱を失う、温水 を水滴化するのは、空気と水の接触面積を大きくし、冷 却効率を上げるためである。小さい水滴は空気と一緒に 冷却塔の内部へ流れ込もうとするが、水滴除去装置によ って捕捉される、しかし、ごく僅かの水滴は冷却塔の内 部へ入り込む。これを漂流水滴(drift)といっている。 以上のことから明らかなように,冷却塔内部の空気は高 温で,ほぼ飽和の状態にあり,しかも少量の漂流水滴を含 んでいる。この冷却塔内部の空気と外気との密度差によ って、空気を冷却塔へ流入させる力が生じ通風が行なわ れる。自然通風と呼ばれるのはこのためである。通風を 引き起こす力を強くするため,自然通風冷却塔は大きく 作られる。口径は 40 m~80 m で, 高さは 100 m~150 m, 塔の側面は双曲線を描いている.

この冷却塔では, 温水の冷却に水滴の蒸発が大きな役 割を果たしており、 冷却に使われた空気は湿ってしま ら. このような冷却方法を用いている冷却塔を湿潤冷却 塔という,一方,乾燥冷却塔とは,温水の冷却の際に, 空気と温水が直接接触しないような装置を用いたもので ある、したがって、この場合、冷却に使用された空気は 乾燥したままである。

機械通風冷却塔は,冷却塔の排出口近くにファンを取 り付け、ファンによって上昇気流を作り出し通風を行な らものである.したがって,塔をそれほど大きくする必 要はなく、口径は 10 m~20 m, 高さは 20 m 前後であ る。また、側面の大部分から空気を取り入れるように作 ってある. この機械通風冷却塔は, 5~10個を直線状 (第2.2図)またはドーナツ状に並べ、一つのユニット として建設される.

現在用いられている冷却塔の大部分は湿潤冷却塔であ る. 第2.1 表は, 湿潤冷却塔の排出口付近の プルーム

第2.2 図 機械通風冷却塔。

▶天気//26.7.

発電施設からの熱放出が大気に及ぼす影響

型	半 径	鉛直速度	温度差 (プルームの温度) (ーまわりの温度)	湿度	水滴量
機 械 通 風	5~10 m	10 m/sec	10~20 °C	100%前後	0.0001~0.001 g/g
自 然 通 風	20~40 m	5 m/sec	10~20 °C	100%前後	0.0001~0.001 g/g

第2.1表 湿潤冷却塔から放出される初期のプルームの特徴 (Hanna, 1978 a)

第3.1 図 折曲がりプルームの風下 150 m におけるプルームに直角な断 面内の温度(°C)分布(プルームとまわりの大気との温度差) (Hanna, 1978 b).

の平均的特徴を示している (Hanna, 1978 a). もちろ ん, ブルーム内でのいろいろな物理量の分布は一様では ない. たとえば, 排出口におけるプルームの水平断面内 の鉛直速度は中心付近では 1 m/sec 程度であるが, 中 心から 2 m の所で最大の 12~14 m/sec に達し, 中心 からさらに遠くなるにつれて減少するという測定結果も ある. しかし, 多くのモデルでは, ブルームの水平断面 内の物理量の分布は一様であると仮定する.

3. 見えるプルーム

湿潤冷却塔から放出されるブルームはほぼ飽和に達し ているので,殆どの場合,上昇を始めると直ちに凝結を 起こし,目に見えるようになる.このプルームは,風の 強いときには,折曲がりブルームとなって,上昇を伴い ながら水平に流れるが,風の弱いときには垂直に上昇す る.折曲がりプルームとして扱うか鉛直ブルームとして 扱うかは,風速が1m/secより大きいか小さいかを基準 とするのが普通である.

1976年6月22~23日, チョーク・ポイント (Chalk 1979年7月 Point) で飛行機によるブルームの断面観測が行なわれた. 得られた温度分布が第3.1 図と第3.2 図に,まわりの大気との温度差として示されている(Hanna, 1978b). 第3.1 図は,折曲がりブルームの風下 150 m の地点におけるブルームに直角な断面図である. この断面図の,高さ 200 m における温度分布はほぼ正規型になっている. 第3.2 図は,鉛直ブルームの中心を通る鉛直断面図である. この図は同時測定の結果ではなく,各高度を異なった時刻に測定したデータから作られているから,泡状の分布は実在するかどうか問題がある. この場合も,一定高度の温度分布はほぼ正規型である.

プルームの流れに直角な断面内の平均温度とまわりの 大気の温度との 差を ΔT とするとき, ΔT の予測式が Hanna (1974) によって提案されている.

折曲がりプルーム:

$$\Delta T/\Delta T_{0} = \left\{ 1 + 0.4 \left(\frac{z}{R_{0}} \right) \left(\frac{w_{0}}{u} \right)^{1/2} \right\}^{-2} \quad (3. 1)$$
鉛直ブルーム:

385

第3.2 図 鉛直プルームの中心を通る鉛直断面内の
 温度(°C)分布 (プルームとまわりの
 大気との温度差)(Hanna, 1978b).

$$\Delta T / \Delta T_0 = \left(1 + 0.15 \frac{z}{R_0} \right)^{-2}$$
 (3. 2)

ここで、z は高度, R はプルームの半径, w はプルーム の上昇速度, u は風速で, subscript 0 は初期の値, すな わち, 排出口における値を表わしている.

チョーク・ポイントの観測では、 $w_0=4.6 \text{ m/sec}$, $(T_{plume})_0=36.8$ °C, $T_{air}=24$ °C, u=4 m/sec, $R_0=24$ m であったので, z=200 m の ΔT は (3. 1) 式より 0.6°C となり,観測値 1.5°C に近い値になる.また, (3.2) 式のテストの結果によれば、予測値は実測値より 2倍ほど常に大きくなるが、 ΔT の高さによる減少の割 合はよく表現されている.

目に見えるプルームの長さの観測は不完全ながら多く の場所で行なわれており、ほぼ似たような結果を得てい るが、アメリカ、ケンタッキー州のパライダイス (Paradise) にある自然通風冷却塔からのプルームについての 1年間にわたる観測によれば、プルームの長さは季節変 動が大きく、夏の 150 m に対し、冬は 600 m で、年平 均は 410 m である. これを日変化で見るならば、午前 中は 620 m、午後は 190 m である. また、観測された プルームの中で最も長 いものは 14 km にも達していた (Coleman・Crawford, 1978).

次に,見えるプルームの長さの簡単な予測方法を述べよう.

体積フラックス (volume flux) を, 折曲 がりプルームについては $V=uR^2$ (初期の値は $V_0=w_0R_0^2$), 鉛直 プルームについては $V=wR^2$ と定義すると, 初期の体 積フラックスに対する高さ z の体積フラックスの比は, 折曲がりプルーム:

 $V/V_0 = [1+0.28(z/R_0)(u/w_0)^{1/2}]^2$ (3.3) 鉛直プルーム:

$$V/V_0 = (1+0.11 z/R_0)^2$$
 (3.4)

によって与えられる(Hanna, 1972; 1978 a). 記号の 説明は(3. 1)(3. 2)式の所で済んでいるので省略する.

さて, プルームが見えるための条件は, 凝結を起こす ための条件にほかならないから,

$$V_0 Q_0 \ge V(q_s - q_e) \tag{3.5}$$

である.ここで、 Q_0 はプルームの初期の水分量(気体 と液体を含む)、 q_e と q_s はそれぞれまわりの大気の実 際の水蒸気量と飽和水蒸気量である.

プルームの初期の値とまわりの大気の q_e , q_s がわか れば, (3.5) と (3.3) あるいは (3.4) を用いて, 見えるプルームの高さを求めることができる.鉛直プル ームについては求めた高さがそのまま長さになるが,折 曲がりプルームについては,次に示すプルームの高さと 風下距離の関係式 (Briggs, 1975)を用いて,求めた高 さより長さを計算する.

$$z = 1.8 F^{1/3} x^{2/3} / u \tag{3. 6}$$

ここで、*x* は風下距離、F は 初期の浮力フラックス (buoyancy flux) で、 $F = -\frac{g}{T_0} V_0 dT_0$ で与えられる.

第3.1 表には、オーク・リッジ(Oak Ridge) におけ る見えるプルームの長さと高さについて、観測結果と 上述の方法による予測結果との比較が示されている (Hanna, 1978 a).予測値と観測値の相関係数は高い値 を示しているが、予測値は、長さについて20%、高さに ついて50%程度過大評価の傾向がある.

4. 雲の形成

冷却塔から放出されたプルームは、まわりの空気を吸い込みながら上昇するので、100m も上昇すると、プル

▶天気″26.7.

日

付

-ム内の空気の大部分はまわりからの吸込み(entrainment)による空気によって占められる. このように、 プルームはまわりの空気を持ち上げる働きがある. プル ームによって持ち上げられた空気が凝結高度に達すると 雲を作るわけである.

前節で述べた見えるプルームの長さを求める方法は, 大気の状態が高さによってあまり変わらないときに適用 できる.大気の状態が高さによって著しく変化するとき や雲物理過程が重要になるときには,もっと精密なモデ ルを必要とする.ところで,見えるプルームも雲の発達 も,結局はプルーム内での凝結の問題であるから,両者 は同一のモデルで扱い得るわけである.雲の発達の数値 モデルは数多くあるが,ここでは,Hanna (1976;1978 a)によって提案された定常1次元モデル (パラメータ が 2 のみの関数) について説明しよう.

Briggs (1975) は、運動量プルーム、温度プルーム、 水蒸気プルームの有効半径 R_m , R_t , R_w の間には、

 $R_m \ge R_t > R_w$ (等号は鉛直プルームの場合) の関係のあることを見出した. さらに,温度プルームに 対する運動量プルームの断面積の比 E_m と水蒸気プルー ムに対する温度プルームの断面積の比 E_w は、

$E_m = 2.25$	(4.	1)
$E_w = 2, 0$	(4.	2)

となることが知られている. E_w は peak factor とも言われる.

プルームの半径と吸込み率 $O = \frac{1}{V} \frac{dV}{dz}$ は、次のように表わされる。

鉛直プルーム:

$$\begin{array}{c}
O_m = O_t = 0. \ 15, \ O_w = 0. \ 107 \\
\frac{\partial R_m}{\partial z} = \frac{\partial R_t}{\partial z} = 0. \ 15 - R_t (g/T_p) \\
(T_p - T_e)/2w^2 \\
\frac{\partial R_w}{\partial z} = 0. \ 71 \frac{\partial R_t}{\partial z}
\end{array}$$
(4. 3)

折曲がりプルーム:

$$\begin{array}{c}
O_{m}=1.2, \quad O_{t}=0.8, \quad O_{w}=0.57\\
\frac{\partial R_{t}}{\partial z}=0.4-(R_{t}/2u) \quad \frac{\partial u}{\partial z}\\
\frac{\partial R_{w}}{\partial z}=0.71 \quad \frac{\partial R_{t}}{\partial z}\\
\frac{\partial R_{m}}{\partial z}=1.5 \quad \frac{\partial R_{t}}{\partial z}
\end{array}$$
(4. 4)

ここで、 T_p はプルームの温度、 T_e はまわりの大気の温 度、subscript *m*, *t*, *w*はそれぞれ、運動量プルーム、

			観測値	予測值	観測値	予測值
1972.	12.	29	静穏		150	160
1973.	1.	10	500	490	200	520
1973.	1.	11	静穏		200	380
1973.	1.	31	静穏		175	240
1973.	2.	1	250	240	200	280
1973.	2.	5	125	170	100	190
1973.	2.	6	100	100	75	140
1973.	2.	7	200	140	200	260
1973.	2.	26	静穏		75	140
1973.	3.	9	静穏		75	120
1973.	3.	12	静穏		50	60
1973.	3.	20	500	1000	500	720
1973.	4.	8 [.]	150	170	100	190
1973.	4.	19	100	160	100	180
1973.	4.	26	1500	3600	500	600
1973.	5.	10	静穏		400	430
1973.	5.	17	700	1040	500	1220
	相関	룅係数		0.98	0.87	
	予渡	间值/額	覭測值	1.2	1.55	

第3.1表 オーク・リッジにおける見えるブルームの長さおよび高さの観測値と予測値 (Hanna, 1974)

長さ (m)

温度プルーム, 水蒸気 プルームに関する量 であること を表わしている.

雲モデルを構成するそのほかの方程式としては,次の ようなものがある.

運動方程式:

$$\frac{\partial (w^2/2)}{\partial z} = (g/E_m) \{ [T_p(1+0.61E_wq_p) - T_e(1+0.61q_e)] / [T_p(1+0.61E_wq_p)] - E_w(Q_c+Q_h) \} - O_m w^2/R_m \qquad (4.5)$$

ここで、q は水蒸気量(比湿)、subscript $p \ge e$ は、そ れぞれプルームとまわりの大気に関する量であることを 表わす.また、 Q_e は cloud water (落下速度が無視で きるほど小さい水滴)、 Q_h は hydrometeor water (落 下速度が無視できない水滴)である。

上式の右辺は,浮力による加速度,水滴による drag, 吸込みによる drag を表わしている.

温度方程式:

高さ (m)

$$\frac{\partial T_p}{\partial z} = -\left[(LE_w/c_p) \frac{\partial q_{ps}}{\partial z} \right] - g/c_p - O_t(T_p - T_c)/R_t + \left[(L_iE_w/c_p) (Q_c + Q_h)/\Delta z \right] - \left[(LE_w/c_p) O_w(q_p - q_e)/R_w \right]$$
(4. 6)

ここで,[]のついた項はプルームが飽和しているとき にのみ用いる項, Δz は方程式を積分するときに使用**す** る z の格子間隔, $L \ge L_i$ はそれぞれ,水と水蒸気およ び水と氷の間の相変化のときの潜熱, q_{ps} はプルームの 飽和水蒸気量である.

上式の右辺各項は,凝結による熱の獲得,乾燥断熱膨 張による温度下降,空気の吸込みによる温度下降,水滴 の凍結による熱の獲得,吸込み空気を飽和するための水 滴の蒸発による熱損失を表わしている.

水蒸気方程式:

不飽和
$$\frac{\partial q_p}{\partial z} = -O_w(q_p - q_e)/R_w$$
 (4. 7)

飽和
$$\frac{\partial q_p}{\partial z} = \frac{\partial q_{ps}}{\partial z}$$
 (4.8)

プルームが不飽和のときは(4.7)を, 飽和のときは
(4.8)を用いる.(4.7)の右辺は吸込みの効果を,
(4.8)の右辺は凝結の効果を表わしている.

cloud water 方程式:

$$\frac{\partial Q_c}{\partial z} = -\frac{\partial q_{ps}}{\partial z} - 10^{-3} (Q_c - 0.0005) / w$$
$$-0.00522 Q_c (1000 Q_h)^{0.875} / w - O_w (q_p)$$

$$+Q_c - q_e)/R_w \tag{4.9}$$

上式の右辺は、凝結による水滴の生成, conversion (電気的力や乱流等による cloud water drop の合併お よび凝結の続行によって cloud water drop が hydrometeor water drop に成長すること)による hydrometeor water への転換,併合 (coalescence) による hydrometeor water への転換,吸込みによる水滴の損失 を表わしている.計算にあたっては、吸込み空気を飽和 するため、まず、cloud water が蒸発し、なお、不飽和 のときは、hydrometeor water が使われるものとする. hydrometeor water 方程式:

$$\frac{\partial Q_h}{\partial z} = 10^{-3} (Q_c - 0.\ 0005) / w$$

+ 0.\ 00522 Q_c (1000 Q_h)^{0.\ 875} / w
- 4.\ 5 Q_h (1000 Q_h)^{0.\ 125} / (w R_w \cos [\arctan(w/u]) - Q_w Q_h / R_w + K_2 / dz \ (4.\ 10)]

上式の右辺は、conversion と併合による hydrometeor water drop の生成,降水による消失,吸込みによる消 失を表わしており,最後の項は,吸込み空気を飽和する ため、cloud water がすべて蒸発しつくしても、まだ, 不飽和のとき蒸発の不足分を表わす補正項である. この 不足分は hydrometeor water の蒸発によって補われる が,なお,飽和しきれないときは、プルームから水滴が なくなる.

第4.1図 精油所からの熱放出により発達した積雲と鉛直速度 (m/sec) 分布 (Auer, 1976).

雲モデルの数値計算では、飽和比湿の式が必要である が、ここでは、精度の高い Goff-Gratch の式をあげてお く.

(4. 1)~(4.11)を用い、まわりの大気の条件 T_{e} , q_{e} , uと初期条件 R_{0} , w_{0} , T_{p0} , q_{p0} , q_{ps0} , Q_{c0} , Q_{h0} を与え ると、高さ z における R_{t} , R_{m} , R_{w} , w, T_{p} , q_{p} , Q_{c} , Q_{h} を求めることができる。 すなわち、1次元ではある が、雲の高さ、雲の大きさ、雲の中での各種物理量の分 布がわかるわけである。

方程式系の数値積分にあたっては、 $\Delta z \approx 0 \text{ m} \sim 10 \text{ m}$ では 0.01 m に、 $10 \text{ m} \sim 100 \text{ m}$ では 0.1 m に、100 m ししては 1 m にとり、 $u=1 \text{ m}/\sec \overline{z}$ 基準にして、u

第4.1表 ウッド・リバー精油所の上に発生した積 雲について、観測値と雲モデルによる予 測値との比較(Hanna, 1976b).

		観測値	予測值
	雲底高度 (m)	700	650
	雲頂高度 (m)	2050	2350
高度 (m)			
	水滴量 (g/m³)		
930		0.46	0.56
1270		0.10	0.75
1860		0.44	1.30
	鉛直速度 (m/sec)		
500		3	2.0
1500		4	2.0
2000		3	2.3
	温度差 $(T_p - T_e)(^{\circ}C)$		
500		0.2	0.1
1500		-0.5	0.3
2000		-0.2	0.5

がこれより大きい 所では 折曲 がりプルームに 関する式 を, u がこれより小さい所では鉛直プルームに関する式 を用いる.

冷却塔は通常いくつかがグループで作られるので,各 冷却塔から放出されたプルームの合併が起こる.この場 合は次のように計算する.プルームの半径が冷却塔の間 の距離の半分に等 しくなったとき合併が起こるものと

第4.2図 雲モデルにより計算された60分後の雲分 布 (水滴量:g/kg)、上の図:すべて潜 熱,中の図:潜熱と顕熱が同量,下の図: すべて顕熱(Koenig et al., 1978).

1979年7月

第5.1図 降雪を伴うプルームの断面図 (Kramer et al., 1976).

し,合併後のプルームは N^{1/2}R (N はプルームの数, R は半径)の半径を持つものとする. これは,合併プルー ムの断面積は,各プルームの断面積の和になるという考 え方に基づくものである.

1973年8月10日, アメリカ, イリノイ州のウッド・リ バー(Wood River)にある精油所からの熱放出によっ て,孤立した降水なしの定常性積雲が発生し(第4.1 図),飛行機による詳細な観測がなされた(Auer, 1976). この観測例に前述の雲モデルを適用し,比較した結果が 第4.1表に示されている(Hanna, 1976b).雲底およ び雲頂の高さはモデルによってよく予測されているが, 鉛直速度は予測値が20~50%ほど小さく,水滴量は3~ 10倍ほど大きい.温度差の誤差は 0.8°C 以内におさま っている.

湿潤冷却塔から放出されるプルームと乾燥冷却塔から 放出されるプルームの雲の形成に対する違いを見るた め、Koenig et al. (1978)は、全放出熱量は同じである が、すべてが潜熱の場合、潜熱と顕熱が同量ずつ含まれ る場合、すべてが顕熱の場合について雲の発達の数値シ ミュレーションを行なった。モデルは、運動量、温度、 水蒸気量、水滴量等に関する2次元の方程式系から成 り、K理論に基づく拡散効果や前述の1次元モデルで述 べたような雲物理過程のパラメタリゼーションを含んで いる。熱放出は、各時間ステップ毎に、特定の格子点に おける顕熱や水蒸気の発生として与えられた。

第4.2 図は,熱放出後60分経過したときの雲の様子を示している.放出熱がすべて顕熱の場合,上昇速度,雲 頂高度,雲の中とまわりの大気との温度差,水滴量のいずれも,他の場合に比べて大きく,雲の発達が最も盛ん

第5.2図 プルームからの降雪量 (cm) (Kramer *et al.*, 1976).

なことを示している.一方,放出熱がすべて潜熱の場合 には,雲の発達が最も弱い.このことから,放出熱の中 に含まれる潜熱の量が多いほど,初期の浮力が小さいの で,プルームは大きな雲を作るほど上昇できないが,放 出熱の中で顕熱の割合が大きいほど,初期の浮力が大き く,プルームはまわりの空気を吸い込みながら高い所ま で上昇するので雲の発達も盛んになることがわかる.し たがって,湿潤冷却塔の方が乾燥冷却塔より雲を作りに くいと言える.

第5.3 図 冬季における発電所操業後降水量の操業前降水量に対する比 の分布 (Hanna, 1978 b).

5. 降水量の増加

冷却塔の上で雲が形成されるという事実は,しばしば 観測されているが,降水の増加についての報告は数少な い.以下,いくつかの例について述べよう.

1976年1月18日, アメリカ,西バージニア州のアモス (Amos)火力発電所上空は晴れていたが,風下で,こ の発電所の冷却塔から放出されたプルームから降雪が見 られた (Kramer et al., 1976).当日は寒い日で地上気温 は -12° C, 1,600 m に逆転層があった.上昇したプルー ムは 400 m で煙突から排出された煙流と合併し,1,600 mまで上昇し,以後はほぼ水平に流された.07時55分か ら11時11分まで飛行機によるプルームの観測が行なわ れ,第5.1 図の結果を得た.ブルームの中の水滴は,冷 却塔から風下 5 km で過冷却水滴から氷晶に変わりはじ め,11 km ですべてが氷晶になり,この氷晶のプルーム は 43 km まで続いた. できた氷晶は, 成長しつつ下降 をはじめ, 13 km で雪が地上に 達 した. 降雪は 43 km まで続いた. 雪は非常に軽い綿毛のようであったが, 積 雪量の最高は 2.5 cm に達した. 積雪の状態は第5.2 図 に示すように, ほぼブルームの真下に限られた. 降雪の 条件は, 放出される水蒸気量の割合にもよるが, 気温が -12° C かそれ以下で, 安定な成層へブルームが流れ出 ることが必要のようである.

1960年12月21日夜から22日朝にかけて、オーク・リッ ジ (Oak Ridge) の冷却塔のブルームから、断続的で僅 かではあるが、降雪があった (Culkowski, 1962). 雪は 風下 5 km から降りはじめ、8 km までは積雪があり、 さらに、16 km までは非常に僅かではあるが降雪が認め られた. 積雪の幅はほぼ 1.6 km であった. 3~8 km に 降った雪片は 0.6 cm の大きさであった.

1979年7月

また, Otts (1976) は, アモス発電所の冷却塔のプル ームからの降雪で 15 cm の積雪があった例を報告して いる.

プルームの中で雪が作られて地上に達するまでには時 間がかかるので,通常,降雪は冷却塔の近くには見られ ず,風下 10 km くらいからはじまる.

夏季,しゅう雨性対流の起こりやすい条件のとき,冷 却塔から放出されたブルームが引き金になって降水を引 き起こすことは可能であろう.また,広い地域をおお い,降水を伴っている雲にブルームが合併したとき,降 水量を増大させることも考えられる.しかし,これら は,いずれも検証がむずかしい.

アメリカ,ジョージア州のボーエン (Bowen) 発電所 の 25 km 以内で,発電所の操業前から長期間にわたっ て雨量の観測が行なわれた (Patrinos, 1978). 冬季の降 水量について,発電所操業後の操業前に対する比を示し

第6.1図 ダウン・ウォッシュと cavity.

第6.2図 プルームが存在するときの水蒸気量分布 (Hanna, 1978 a).

10

たのが第5.3 図である.発電所の平均的な風下で,操業 後,降水量の増加が見られるのは興味深い. もちろん, その有意性を確かめるには,この地域の降水量の自然変 動度等を調べる必要がある.

6. 霧の発生

風が強いとき,機械通風冷却塔の後には、ダウン・ウ * ッシュ (downwash) が起こりやすい (第6.1 図).オ - ク・リッジ (Oak Ridge) での観測結果によると、ダ ウン・ウォッシュは50%の頻度で発生している.このと き cavity 内の水蒸気量は、

 $q = Q/Au \tag{6. 1}$

である. ここで, Qは水蒸気の放出率, uは風速, A は cavity の流れに直角な断面積である. q が飽和水蒸気量 を越えると霧になる. 機械通風湿潤冷却塔の場合, プル ームは殆ど飽和しているから, ダウン・ウォッシュを起 こすと cavity 内には霧ができやすい. プルームは cavity 領域を出ると浮力により再び上昇するから, 霧の発生領 域は冷却塔の風下 200 m 以内に限られることが多い.

自然通風冷却塔の場合には,側面が双曲線型をしてい るため,ダウン・ウォッシュが起こりにくい.

霧が発生しやすいのは大気が安定なときであろう.このとき、折曲がりブルームが存在するとすると、水蒸気量の分布は第6.2図のようになる.大気は安定であるから、水蒸気量分布は地表に近いほど大きくなり、そのような水蒸気量分布の上にブルームの持つ水蒸気量が重なることになる。ブルーム内の多量な水蒸気の地表への到達は、水蒸気量の少ない所から多い所へ向かっての輸送になるので、達成はむずかしい。冷却塔から放出された折曲がりブルームが、風下で地表に達し霧を発生するという観測事実が殆どないのは、このためであろう.

7. 漂流水滴の沈着

第1節で述べたように,湿潤冷却塔からは熱放出の際 に漂流水滴も放出される.漂流水滴は大気に与える影響 よりも,建物や植物等に沈着し,水滴に含まれている化 学成分が害を及ぼすので問題になっている.ダウン・ウ ォッシュの起こりやすい機械通風冷却塔では,この漂流 水滴の沈着が大きい.

以下では,折曲がりブルームからの漂流水滴の沈着モ デルについて述べよう(Hanna, 1978 c).

水滴の粒径と終端速度(terminal velocity)の関係が 第7.1表に示されている。200 µの粒径の終端速度は 0.72 m/sec で,乱流鉛直速度変動と同じオーダである から,粒径 200 µ以下の水滴は、プルーム内の乱流に

N天気/ 26.7.

粒 径 (μ)	終端速度 (m/sec)
50	0.06
100	0. 27
200	0.72
400	1.62
600	2.47

第7.1表 水滴の粒径と終端速度

第7.2図 200 μ以上の漂流水滴の軌道.

よって拡散をうけつつ沈降するものとし,200 µ 以上の 粒径の水滴は,プルームに流されつつ,乱流には左右さ れずに終端速度で沈降するものと考える.

200 μ 以下の水滴は、粒径によって五つのクラスに分け、各クラスで水滴はそのクラスの平均粒径をもっているものとし、各クラス毎に沈着量を計算する. 放出された水滴は正規型プルーム・モデルを用いてその拡散を計算し、プルーム内での濃度分布を求めるが、プルームの軸は V_gt だけ下降するものとする(第7.1 図). 沈着量は(地上濃度)× V_g として求める. ここで、 V_g は終端速度で次の実験式より計算する.

 $D < 0.0093 \text{ cm} \quad \mathcal{O} \geq \regin{array}{l} V_g = 3.2 \times 10^5 D^2 \\ 0.0093 \text{ cm} < D < 0.068 \text{ cm} \quad \mathcal{O} \geq \regin{array}{l} V_g = 6816 D^{1.177} \\ 0.068 \text{ cm} < D < 0.26 \text{ cm} \quad \mathcal{O} \geq \regin{array}{l} V_g = 2155 D^{0.746} \\ 0.26 \text{ cm} < D \quad \mathcal{O} \geq \regin{array}{l} V_g = 1077 D^{0.224} \end{array} \right\}$ (7.1)

上式でDは粒径, V_g の単位は cm/sec である.

粒径 200 μ 以上の水滴の場合には、粒径により10の ρ ラスに分け、各 ρ ラス毎に計算する. プルームを第7.2 図のように、 Δx 毎に区切ると、区間 Δx でプルームを 脱出する水滴の割合は、

$$f = \frac{V_g(\Delta x/u)}{2R} \tag{7. 2}$$

となる. fを最初の区間から順次,各区間について加え

第7.3 図 冷却塔から0.5 km (上図) と1 km (下図)における漂流水滴の沈着量の 風向別分布(Meyer-Stanbro, 1977).

1979年7月

粒径(µ)	全質量に対 する割合 (%)	粒径 (µ)	全質量に対 する割合 (%)
10~ 30	13.8	350~ 400	0.9
30~ 50	28.8	400~ 450	0.7
$50\sim$ 70	13.4	450~ 500	0.6
70~ 90	8.9	500~ 600	1.0
90~110	6.2	600~ 700	1.0
110~130	4.2	700~ 800	0.9
130~150	3.4	800~ 900	0.8
150~180	3.8	900~1000	0.7
180~210	3.0	1000~1100	0.6
210~240	2.3	1100~1200	0.4
240~270	1.7	1200~1300	0.1
270~300	1.3	1300~1400	0.1
300~350	1.4		

第7.2表 チョーク・ポイント冷却塔の排出口にお ける水滴の粒径分布 (ESC, 1977).

ていき,総和が1になった所で,そのクラスの全水滴が プルームから脱出し終わったと考える.

プルームの下面の高さ z_{pl} は $z_{pl}=z-R$ であるから, z は (3. 6)を用いて x より求め、また、R は $R=R_0+$ 0.5 z より計算すると、 z_{pl} がわかる. プルームを脱出 した水滴は uz_{pl}/V_g だけ風下に流されて地表に達するか ら、この間の水滴の蒸発とそれに伴う粒径の変化を考慮 して沈着量を求めることができる.

1977年6月16日, チョーク・ポイント (Chalk Point) で、冷却塔を循環する冷却水に放射性染料を投入し、冷却 塔から放出される漂流水滴の沈着量を測定した (Meyer・ Stanbro, 1977). 冷却塔から 0.5 km と 1 km における 風向別の沈着量を示したのが第7.3 図である.分布は正 規型で,平均の沈着量は 0.5 km で 1,080 kg/km²・ month, 1 km で 330 kg/km²・month であった.なお, 水滴の大きさは、0.5 km で 250~450 μ , 1 km で200~ 400 μ で,平均はそれぞれ、340 μ と 260 μ であった.

この日の拡散実験の結果を、前述の沈着モデルによる 予測値と比較した. Hanna, 1978 a ; 1978 c). 沈着 モデルの計算にあたっては、放射性染料の放出率=1.86 g/sec, $R_0=27$ m, $w_0=4.5$ m/sec, 冷却塔の高さ=124 m, $T_{P0}=35.6$ °C, $T_e=20$ °C, u=8 m/sec, 風向の変動 度=30°, 湿度=93% および第7.2 表に示されているチ $a-9 \cdot ポイントの冷却塔の排出口における水滴の粒径$ 分布を用いた. 以上は観測に基づく値である. 予測の結果は、0.5 km で風向30° 内での平均沈着量が3,600 kg/km²・month, 1 km で 1,000 kg/km²・month で観測 値より3倍ほど大きい値を示した.ただし、この計算で はプルームを脱出した水滴の蒸発は無視した.また、予 測による水滴の平均粒径は 0.5 km で 470 μ , 1 km で 290 μ であった.

8. 発電所団地の影響

現在, アメリカでは, 発電所をある地域に集中的に建 設することを計画しているが, このような発電所団地か ら放出されるエネルギーは, メソ現象のもつエネルギー に匹敵するので, 大気に与える影響の大きいことが予想 され, そのアセスメントが求められていることはすでに 第1節で述べた. この場合, まず, 問題になるのは雲量 の増加であろう. 雲量の増加は日射のしゃへいや降水量 の増大に結びつき, 周辺地域の気候や天候を変えてしま うからである.

Hanna (1977) は、第4節で述べた定常1次元の雲モ デルを用いて発電所団地が雲の発生に及ぼす影響を調べ た. 熱放出源としては、(1) 10³MW の単独冷却塔 (R=30 m),(2) 10⁴ MW の単独冷却塔 (R=91 m),(3) 10⁵ MW の単独冷却塔 (R=300 m),(4) 10⁵ MW の冷 却塔集団 の四つの場合を考えた。(4) の場合、冷却塔 集団は 10³ MW の冷却塔100 本から構成され、4本ず つ25のグループに分かれていて、各グループの4本の冷 却塔は 1 km 間隔に並んだ正方形の一つにおさまってお り、一つの正方形の中では、4本の冷却塔が 200 m 間 隔で配置されているものとした。

ナッシュビル (Nashville) における, 1974年の春夏 秋冬の1日2回のゾンデ観測のデータを用い,前述の四 つの熱放出について雲の発生の予測を行なった。その結 果の雲の発生頻度が第8.1表に示されている。105 MW の単独冷却塔の上には,殆ど常に雲(厚さ2,500m)が あることが予測されている. しかし, 同じ熱放出量で も、(4)の場合のように冷却塔を配置すると雲の発生頻 度は 10³ MW の 単独冷却塔と 10⁴ MW の 単独冷却塔 の場合の中間になり、その影響は大きく軽減される. 10⁵ MW の単独冷却塔は、10³ MW の100本の冷却塔 を無限に接近させた極限と考えられるから、冷却塔集団 の影響を小さくするには、冷却塔間の間隔を充分とり、 プルームの合併が起こらないようにすることである.プ ルームの半径の増加は 0.5z ($R=R_0+0.5z$) で与えら れるから, プルームの上昇高度がほぼ 1,000 m である ことを考慮すると、冷却塔の間隔を1km 以上にとれば プルームの合併を防ぐことができる.

***天気//26.7.**

第8.1表 雲モデルによって予測された雲の発生頻 度 (Hanna, 1977)

E		冷却塔集団		
	10 ³ MW	$10^4 \mathrm{MW}$	10 ⁵ MW	$10^5 \mathrm{MW}$
1月	0. 41	0.70	0.97	0.59
4月	0.34	0.59	0.96	0.43
7月	0.51	0.76	0. 97	0.59
10月	0.31	0.54	0.89	0.39
平均	0.39	0.64	0.95	0.50

第8.1 図は、1974年7月2日の観測データを用い、雲 モデルによって計算されたプルームの鉛直速度である. 105 MW の冷却塔集団のカーブが途中から枝分かれして いるのは, プルームの合併が起こったことを意味してい る。当然のことながら、プルームの上昇到達高度と雲の 発生頻度の間によい相関のあることがわかる.

Lee (1976) は, Hanna とほぼ同じ定常1次元雲モデ ルを用いて、アメリカ、ルイジアナ州のシュレーブポー ト (Shreveport) における1960年の1月と7月の観測デ ータに基づき, 雲の発達を調べた。冷却塔は 300m 間 隔で並んでいるものとし, その数をいろいろ変えてみ た.

結果が第8.2図に示されている。冷却塔の数が、ある 値を越えるとプルームの上昇到達高度が不連続的に増大 することがわかる、すなわち、冷却塔の数が、あるしき い値を越えると飛躍的に雲の発生頻度の多くなることを 意味している。なお、そのしきい値は気象条件によって 左右されるようである.

Rao · Hosker (1978) は、定常2次元の closure モデ ル(拡散に関して、K理論の代わりに、高次相関量を用 いる)を用いて、湿度と雲の発達の関係、各種物理量の 2次元的分布等を調べた. 放出熱量は 1,000 MW/km² とし,放出面積としては 20 km² を考えた. すなわち, 20,000 MW の発電所団地に相当する.

第8.3 図は、湿度90%のとき発電所団地の上の雲の状 態を表わしている. 雲底高度は 300 m, 雲頂高度は 800 m であるが,湿度が減少するにつれて雲は高くなり,湿 度60%では雲底高度が980m, 雲頂高度が1,430mにな る. また, 第8.4 図に示すように, 発電所団地の風下で は,混合層高度が次第に高くなり,気温も風下 18 km では 2°C ほど上昇している.

Bhumralkar (1976) も非定常 2 次元雲 モ デ ルを用い 1979年7月

第8.1図 雲モデルにより計算されたプルームの鉛 直速度分布 (Hanna, 1977).

第8.2 図 冷却塔の数とプルームの上昇到達高度 との関係 (Lee, 1976).

て発電所団地の雲の発達に及ぼす影響を調べ、風速が強 くなったときや、大気が安定なときは雲が発生しにくい という結果を得ている.

発電所団地のエネルギー放出が大気に与える影響を予 測する一つの方法は,自然的あるいは人工的な同程度の

 第8.3図 冷却塔集団の上に発達する雲の状態(水 滴量:g/kg) (Rao・Hosker, 1978).

第8.4図 冷却塔集団の風下における気温分布 (Rao・Hosker, 1978).

第8.2表	自然的あ	るいは人	工的エネル	ルギー放出	しその解	寺徴 (Hanna	• Gifford,	1975)
-------	------	------	-------	-------	------	-----------	------------	-------

Source	Area	Time duration	Total power	Observations
Surtsey volcano (Bourne, 1964)	1 km²	Several months	100, 000 M W	Continuous cloud water spouts
Australian bushfire (Taylor et al., 1973)	50 km^2	Several hours	100, 000 M W	Cumulus cloud convergence
Booster rocket test (Morris, 1968)	300 m ²	150 seconds	148, 000 M W	Cumulus cloud
Oil burners (Dessens, 1964)	3. 2 km²	Several hours	700 M W	Cumulus cloud dust devils
Oil fires (Davies, 1959)	_	Day	10, 000 M W	Large plume
Large city (Peterson, 1969)	$10^{3} km^{2}$	Continuous	100, 000 M W	Effects on climate
Thunderstorm (Hanna. Swisher, 1971)	10 km²	Hour	50, 000 M W	$2 \text{ cm } h^{-1} \text{ rain}$
Power park	5 to 100 km ²	Continuous	100, 000 M W	

エネルギー放出に伴って、実際にどんな現象が起こって いるかを見ることである.第8.2表には、自然的あるいは 人工的ないろいろなでき事とそれに伴うエネルギー放出 および誘発される現象等がまとめられている(Hanna・ Gifford, 1975). 積雲はほぼ共通に誘発されているが、 時には旋風やたつ巻が起こることもある.

ところで、Briggs (1974) は上昇気流に伴う渦運動が 強化されるかどうかの判定を次のように与えた. V_B を 代表的な鉛直速度、 V_{∞} を代表的な水平速度の接線方向 の成分とすると、(1) $V_{\infty}/V_B>0.9$ のときは渦度の集中 化は起こらず、流れは全体として回転するだけである. (2) $0.15 < V_{\infty}/V_B < 0.9$ のときは、渦度の集中化が起

14

こり, 渦運動が発達する.(3) $V_{\infty}/V_B < 0.15$ のとき は, 渦度の集中化は起こらず, 浮力の効果が卓越する. 発電所団地の場合は(2)のカテゴリーに属し, 渦運動 が発達する可能性を持っているので,発電所団地からの 熱放出が旋風や雷雲発生のトリガーになり得るというこ とは注意すべきであろう.

9. おわりに

これまで述べてきた所から明らかなように,現在,こ の分野の研究は,まだ,不充分な理論や観測に基づいて いるので,今後,これらの点の改良が必要なことはいう までもない.まず,雲モデルや漂流水滴の沈着モデルの 精密化が必要であろうし,さらには,プルームの合併の 問題,複合雲の成長とまわりの 大気 との 相互作用の問題,熱放出に伴う渦の発達の問題,ダウン・ウォッシュの問題等についても研究を進めることが必要であろう.

また,観測事実の集積も,現象の理解とモデルの開発 のために努力しなければならないことである.

文 献

- Auer, A.H., 1976: Observations of an industrial cumulus, J. Appl. Met., 15, 406-413.
- Bhumralkar, C.M., 1976: Weather modification caused by waste heat rejected into the atmosphere from cooling towers at large power parks, Preprints, 3rd symp. on atmospheric turbulence, diffusion and air quality, 581-585.
- Briggs, G.A., 1974: Plume rise from multiple sources, Cooling tower environment-1974, 161-179.
 - ——, 1975: Plume rise predictions, Lectures on air pollution and environmental impact analyses, 59-111.
- Coleman, J.H. and T.L. Crawford, 1978: Characterization of cooling tower plumes from Paradise Steam Plant, Cooling tower environment-1978, 1131-1150.
- Culkowski, W.M., 1962: An anomalous snow at Oak Ridge, Tennessee, Mon. Wea. Rev., 90, 194-196.
- Currier, E.L., J.B. Knox and T.V. Crawford, 1974: Cooling pond steam fog, J. Air Poll. Cont. Assoc., 24, 860–864.
- Hanna, S.R., 1972: Rise and condensation of large cooling tower plumes, J. Appl. Met., 11, 793-799.
 - , 1974: Meteorological effects of the mechanical draft cooling towers of the Oak Ridge Gaseous Diffusion Plant, Cooling tower environment-1974, 291-306.
- , and F.A. Gifford, 1975: Meteorological effects of energy dissipation at large power parks, Bull. Amer. Met. Soc., 56, 1069-1076.
- , 1976a: Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos Power Plant, Atmos. Environ., 10, 1043-1052.

- , 1976b: Comments on "observations of an industrial cumulus", J. Appl. Met., 15, 1232-1233.
- tower plumes from energy centers, J. Appl. Met., 16, 880-887.
- generation, Atmospheric effects of energy generation, Atmospheric sciences and power production, Chapter 15.
- ——, 1978b: Effects on the atmosphere of heat rejection from large wet or dry cooling towers, Presented at Forth U.S.-Japan joint meeting on air pollution related meteorology, 1-22.
- ——, 1978c: A simple drift deposition model applied to the Chalk Point dye tracer experiment, ATDL Contribution File No. 78/3, 105-118.
- Koenig, L.R., F.W. Murray and P.M. Tag, 1978: Differences in atmospheric convection caused by waste energy rejected in the forms of sensible and latent heats, Atmos. Environ., 12, 1013-1019.
- Kramer, M.L., D.E. Seymour, M.E. Smith, R. W. Reeves and T.T. Frankenberg, 1976: Snowfall observations from natural-draft cooling tower plumes, Science, 193, 1239-1241.
- Lee, J., 1976: A numerical simulation of atmospheric convection caused by heat dissipation at large power centers., Preprints, 3rd symp. on atmospheric turbulence, diffusion and air quality, 563-570.
- Meyer, J.H. and W.D. Stanbro, 1977: Fluorescent dye, a novel technique to trace cooling tower drift, Presented at 4 th joint conf. on sensing environ. pollutants.
- Otts, R.E., 1976: Locally heavy snow downwind from cooling tower, NOAA Tech. Memo. NWS-62.
- Patrinos, A., 1978: Is it raining in Georgia? Oak Ridge Nat. Lab. Review, 11, 22-29.
- Rao, K.S. and R.P. Hosker, 1978: A numerical study of meteorological effects of waste heat and moisture releases from hypothetical power parks, ATDL Contribution File, No. 77/26.