1979年4月中旬の黄砂

石坂重次*

1. まえがき
気象衛星の写真が得られるようになった、その可視画像から、暖流、積雪など雲以外の存在も把握できるようになった。黄砂もまたその一つである。1979年4月14日から15日に向けて、日本各地でかなり顕著な黄砂が観測された。大陸の砂漠で発生した黄砂は、偏西風に乗って日本付近、時には千島列島まで拡がると言われるが、偏西風という言葉のイメージからは、黄砂は徐々に高い層の流れで運ばれると考えられるのが普通であろう。しかし、気象衛星の可視画像によって黄砂の拡がり方をみると、黄砂は大気上層の風によって運ばれているのでではなく、地表面下層の現象のように思えることがある。

2. 黄砂の発生
可視画像では、反射輝度の弱い海面は黒く、厚い雲は白く輝いて見えるのが普通である。図1の写真（第1図）は、黄砂が本州まで拡がった4月15日06時00分の可視画像である。本州の南海岸から、東部側、東半分、南部から向かって細長く見えているのが黄砂である。地上実況気象報告で見れば、ほぼ本州全域で黄砂を観測しているが、本州から日本の南海岸にかけて、南半分の黄砂域に比べて段階的に稀薄なためであろうか、写真からは殆ど識別できない。

今回の黄砂は、4月11日にヨーロッパ・アラスカ砂漠を通じて発生した低気圧に伴って、タイムループ気象から観測されるように、強い寒風（500 mb - 41°C）が南下して、鉱直混合の起き易い不安定帯を形成し、また低気圧後面の気圧傾度が大きき、地表では30 kts以上の風が吹いたために、砂漠の黄土が捲き上がり、それが上空に運ばれて拡がったものである（第3図、第4図参照）。

* Shigeji Ishizaka, 気象衛星センター解析講　

1979年11月

3. 黄砂の拡がりと地上気圧の谷
発生した黄砂は、華北、華中から黄海、東部那海を経て、14日には日本付近に達した（第5図）。図のそれぞれの境界付近、可視画像および地上実況をもとにした06:00時における黄砂の拡がりを示している。また、同时刻の地上気圧と前線の移動を示した。図からわかるように、黄砂域の東端は谷の後面の降水現象のために地上の谷より遅れていることが多く、谷の後面に降水現象がない場合には、黄砂域の東端と地上の谷はほぼ一致している。この様子は、図4の写真（第1図）からよくわから、A付近に見られる積雪の雲列は地表の寒冷前線に対応しているが、この付近の前線は弱く、降雪現象を伴っていないので、黄砂（淡灰色域）はこの雲列のすぐ西側まで拡がってきている。

4. 黄砂の拡がりと上空の流れ
黄砂は、それが存在する層の風に流されて風下に拡がるである。今回の黄砂は、発生から1日後の12日06時00分には華北まで拡がった（第5図）。第6図はこれより6時間後の500 mb 天気図であるが、12時06分に華北まで拡がった黄砂が、500 mb 付近の流れで拡がるとすれば、東北地方の中東部方面に拡がる両が発生する。しかし、実際にはそのような拡がりを示さず、黄砂は南東にて拡がり、13日に06時00分には黄海から華北をおおっている。一方、第7図は第6図と同時刻の850 mb 天気図である。黄砂の存在する地域の風向は北西ないし北東を示している。黄砂は、12日06時00分から13日06時00分にかけては、黄海方面への拡がりとチベット高原の東や華中の南下が見られ、黄砂の拡がりと850 mb の流れとはだいたい一致している。

5. 黄砂の拡がりと上空風速
日本付近の黄砂の拡がりを見ると、14日西日本に達し
第3図 1979年4月11日12時、500mb。
第5図 黄砂の拡がり。1979.4.11.06Z～4.15.06Z。陰影域は海拔3,000m以上の地域。

第6図 1979.4.12.12Z。500 mb。
た黄砂は、15日には東日本まで拡がった（第5図）。黄砂の拡がりの位相速度は20ktくらいになる。黄砂軸付近の福岡、米子の4日00Zおよび12Zの上層風速をみると、500mbでは70kt以上、700mbでは50ktくらいで、500mb、700mbの風速は、黄砂の拡がりの位相速度に比べかなり大きい。一方、850mbの風速は20ktくらいで、黄砂の拡がりの位相速度をだいたい一致していて、

6. 黄砂の拡がりと地勢
11日から13日かけての黄砂域の西の境界は、第5図からわかるように、ほぼ地図上の3,000mの等高線に沿っているので、黄砂は山地（3,000mより低い）の斜面を迂回するように南に拡がったと言えよう。

今回の黄砂の発生するソビエト、アラジン山脈のおよそ1,500km西に、タリム盆地に達するタクラマカン砂漠がある。そこでは1979年4月上旬から中旬にかけて、静穏または静穏に近い状態が続けており、黄砂の発生など考えられないにも拘らず、地上実況気象報では日日にあたり黄砂の観測を記している。このことは、3,000m以上の山脈に囲まれた盆地状の砂漠で発生した黄砂は、周囲の山脈にその拡散を遮られるため、かなり長期間にわたって空中に浮遊しながら停滞することを示しているようになる。

7. 黄砂より上層に存在する雲の高さ
ロシア東方（第1図）のB、C、D付近の雲の雲頂高度は、黄砂の存在する層よりも高い。B付近を西から東に伸びているのは、ヒマラヤ南側のジェット気流に対応する槽雲のストリートである。このストリートの両端付近の雲について、その赤外温度（等価黒体温度）から算出した雲頂高度は12.4km、8.8kmが得られている。また、C、D付近の雲は積雪と層積雪である。これらの雲については、あいにく雲頂高度が得られていないが、カラーチャート解析により、E付近の積雪（雲頂高度3.2km）とC、D付近の雲の赤外雲頂温度を比較してみると、C付近の雲は比較的雲頂温度がやや低く、D付近の雲はE付近の雲よりもかなり高い雲頂高度を示している。3.2kmという高度は700mbよりやや低い層の高度に相当するので、この結果からは、C、D付近の黄砂は700mbより低い層の現象とはほとんど考えられてよいようである。

8. 黄砂の消減
第1図（15日06Z）のC、Dの雲域で示唆される気圧の谷の東進に伴って、15日12Zには東支那海に低気圧が発生した。この低気圧に伴う雲域およびC、Dの雲域は、

#気象# 26. 11.
9. 黄砂に関する文献から

岡田武松（1927）は、南京に在住した高木健氏の報文として、下記のように記述しているが、その記述からも黄砂は前線に伴って来襲し、それが下層の現象であることがうかがえる。

10. あとがき

以上を総合してみると、黄砂は一般に考えられているよりも下層の現象のように思われる。この調査を終えた段階で、偶然、名古屋大学水圏科学研究所（岩壁助教授）等が、4月15日に名古屋市で行なったライダーによるdustの観測結果をお聞きした。その結果ともほん一致しているので、さらに例数を重ねて調べてみたい。

文献

岡田武松、1927：気象学、岩波書店。