拡散実験データに基づく水平方向

拡散幅 σyの推定方法について*

岡本真一村上俊一 塩沢清茂**

要旨

水平方向の拡散幅 σ_y を推定するための回帰式を提案した。この式では、 σ_y は風下距離に比例し、地表面の状態と風速によって変化する。拡散実験データと比較した結果、起伏のある地域で過小推算の傾向にあるが、全体としては Pasquill-Gifford 線図よりも整合性が高い。

1. 緒言

拡散幅 σ_y の推定方法については多数の報告がある が、わが国においては Pasquill-Gifford (PG)線図が最 も広く利用されている. PG 線図 (σ_y -x線図) は筆者ら (1980)の前報で述べたように、全体に σ_y を小さく推定 する傾向にあり、とくに安定時にこの傾向が顕著に現わ れる.

風向変動幅 σ_{θ} をパラメータとして含む推定法では, 乱流計測データのない場合には,風速,放射収支量,あ るいは Pasquill 安定度などから σ_{θ} を推定し,その推定 値に基づいて σ_{y} が計算される.風向変動幅が得られれ ば, σ_{y} の推定精度の向上が期待できるが, σ_{θ} の推定方 法が確立されていない現状においては,これらのデータ がない場合には,風速などの測定されているパラメータ より直接に σ_{y} を推定する方が有利であろうと考えられ る.

2. 拡散幅 σ_y の推定式

前報の解析より,風下距離 20 km 程度までの範囲では σ_y はほぼ風下距離 α に比例し,すべての風下距離にお いて, σ_y は風速 u に反比例する傾向が見られる.ま た,放出高度による差は小さいが,地表面の状態による 差は第1 図に見るように明瞭に認められる.

- * A model for estimating the horizontal spread σ_y based on the diffusion experiments.
- ** Shin'ichi Okamoto, Shun'ichi Murakami and Kiyoshige Shiozawa, 早稻田大学理工学部。 —1979年9月14日受領— —1979年11月13日受理—

以上の結果より、 σ_y の推定式としては、式(1)の 形式がよいと思われる.ただし、 σ_y は筆者ら(1979)の 前報と同様に、時間の1/4乗に比例すると仮定して、捕 集時間1時間の値に換算したものである.

 $\sigma_y = f(u, z_0) \cdot x$ (1) ここで、 z_0 は地面粗度であるが、この値を正確に求め ることは難かしいので、第1図における分類と同様に、 都市(近郊を含む)、平坦地、起伏のある地域の3種類 に分類する便宜的な方法を採用する. $f(u, z_0)$ は、地表面 状態別に分けて $f_i(u)$ として、第1図より指数関数とす る.ここで、i は地表面状態別の番号で1、2、3とする.

 $\ln \left(\sigma_y / x \right) = \beta_1 u + \beta_0 \tag{2}$

回帰分析には,第1図に示した全データを使用して, 3種類の地域別に計算した。

(0.21 exp (-0.060 u)x (都市)

 $\sigma_y = \begin{cases} 0.12 \exp(-0.013 \, u) x \ (\mp \pm b) \end{cases}$ (3)

└0.12 exp (−0.039 u)x(起伏のある地域)

式(3)に、示す回帰式による計算値を風速階級別地 表面状態別の σ_y 平均値と比較 した結果を第2 図に示 す.ここで使用している 起伏の 大きい 地域の データは Mt. Iron Project (Vandenberg AFB) によるものが大 部分を占めており、普遍性に欠けると思われるので、今 後さらに検討を加える必要があると考えられる.都市と 平坦地の場合について、式(3)による計算値と PG線 図との比較を行なった結果を第3 図に示す.平坦地の場 合、風速による差は小 さく、2~10 m/sec の範囲では PG 線図の B~C階級の σ_y に対応している.都市では、 風速による差が大きく、2 m/sec 程度ではほぼA階級に 対応するが、10m/sec では平坦地での値に近く、B~C

第2図 σ_y/x の風速階級別 (1m/sec 間隔)の平均値と 回帰式の比較.

階級に一致している.

36

3. 拡散幅推定方法の比較と評価

式(3)を求めるために使用したデータ 2224 個の σy

50 X (km)

第3図 式(3)に示す回帰式とPG線図の比較.

実測値を用いて, PG 線図および Briggs (1973) [Gifford (1976) 参照]の方法との比較を行なった. ここで, PG 線図については、環境庁(1975)の総量規制マニュアル に記載されている近似式を使用する.筆者ら(1980)の

▶天気∥ 27. 2.

۸

拡散実験データに基づく水平方向拡散幅 σy の推定方法について

方 法	デー タ数	比 率 (cal./obs.)	相関 係数	標準誤差 (RMSE)
PG 線図	733	0.75	0.70	441
Briggs 線図	733	0.90	0.73	411
PG線図(修正)*	2224	1.02	0.72	314
式 (3)**	2224	1.00	0.77	296

第1表 拡散幅 σy の推定方法の評価

* 風速によって PG 線図の階級を設定する方法

** 式(3)については内挿データ

第2表 検証用データによる拡散幅 oy 推定方法の評価

方 法	デー タ数	比 率 (cal./obs.)	相関 係数	標準誤差 (RMSE)
PG 線図	406	0.94	0.74	274
Briggs 線図	406	0.96	0.75	272
PG線図(修正)*	445	0.90	0.85	230
式(3)	445	0.99	0.82	251

* 風速によって PG 線図の階級を設定する方法

前報からもわかるよう に, σy は風速への依存性が大き いので, Pasquill 安定度分類表から求まる安定度階級の 他に、風速のみから求める階級も採用する、この場合、 風速uが 2 m/sec 以下ではA階級, 2<u≦5 m/sec では B階級, u>5 m/sec ではC階級として PG 線図の階級 に対応させる. Briggs の線図についても近似式が示され ているので、これを使用し、Pasquill 分類表から求まる 安定度を採用する.この結果を第1表に示す.この表に おいて、PG 線図のデータ数が少ないのは、Pasquill 安 定度の記載されているデータが少ないためである.式 (3) は内挿であるため、比率は1.0 に近く、誤差分散 の平方根 RMSE は最も小さい. Pasquill 分類表から安 定度を求めて PG 線図を使用する方法は、過小評価の傾 向にある. PG 線図を使用する場合には, Pasquill 安定 度分類表から求まる 安定度階級を 不安定側へ 修正して PG 線図の階級に対応させる方がよいと考えられる。

拡散幅 σ_y の推定方法を評価するため,式(3)の回 帰係数の計算に使用されていない σ_y 実測値 445 個を用 いて,推定値と実測値の比較を行なう.このデータの約 半数は 100m 以上の煙源高度であり、100~300mの実煙 突のデータも含み,風下距離は 50~16000m の範囲であ る.このデータのうち,地上源については温位勾配から 推定された Pasquill 安定度 が記載されているものも採 用した. 第3表 検証用データによる地表面状態別の式(3)の 評価

地表面の状態	デー タ数	比 率 (cal./obs.)	相関 係数	標準誤差 (RMSE)
都市	34	0.99	0.84	280
平坦地	.383	1.06	0.85	209
起伏のある地域	- 28	0.46	0.85	560

第4図 検証用データによる拡散幅 σ_y の計算値と実測 値の散布図.

 (a) PG 線図との比較(△:不安定側,◇:中 立(D階級),○:安定側)

PG 線図, Briggs 線図,式(3)から求めた推定値の 評価を第2表に示す.相関係数および誤差分散で評価す れば,風速によって階級を分類し,PG 線図を使用して

1980年2月

第5図 遠距離における σy-x 線図との比較. (a) Colstrip 拡散実験データ (b) INCO 煙流観測データ

 σ_y を求める方法が最良であるが、計算値の比率ではや や過小評価となっている.式(3)から求めた σ_y を地 表面の状態別に分けて評価した結果を第3表に示す.こ の表を見ると、相関係数はすべて0.85程度であるが、起 伏のある地域の計算値が実測値の1/2程度である。した がって、この起伏のある地域における過小推算が全体の 推定精度にも大きな影響を及ぼしていると考えられ、こ の点を改善できれば、全体の精度もさらに向上するもの と思われる.PG線図および式(3)による推定値と実 測値の散布図を第4図に示す.この図を見ても、式(3) では起伏のある地域で、PG線図では安定時に過小推算 となっていることがわかる.

式(3)に示す回帰式は風下距離 20km 程度までのデ

ータに基づいているが、さらに遠距離における整合性を 見るために、Heimback (1975) による Colstrip 拡散実 験データ、Funaki (1978) による INCO 煙流観測デー タとの比較を行なう(第5 図参照). これらのデータに ついては、 σ_y の推定に必要な気象 データ が記載されて いないため、 $\sigma_y-\alpha$ 線図の中に観測データと式(3) に よる計算結果を記入する. Colstrip 実験はやや起伏のあ る地域におけるものであるが、全体に式(3) による計 算値よりも大きくなっている. INCO 煙流観測は 381m の煙突の風下における SO₂ 濃度のデータであり、この 場合はやや過大推算の傾向にある.

4.結論

水平方向の拡散幅 σ_y を推定するための回帰式を作り, 拡散実験データとの比較を行なった. 拡散幅 σ_y は風速 と地表面の状態に依存し,風下距離に比例するものとし て,回帰分析を行なった. この回帰分析には,760回の トレーサー実験による σ_y の実測値 2224 個を使用し,こ の回帰式の検証には 263回の実験 に よる σ_y の実測値 445 個を使用した.

本提案式は起伏のある地域における係数が や や 小 さ く, oy に過小推算の傾向が見られる. しかし, その他 の地域については, Pasquill-Gifford 線図より整合性が よく,風下距離 100km 程度までの範囲に適用できると 考えられる.

文 献

- Fanaki, F.H., 1978: Atmospheric Boundary Layer Effects on the Diffusion of Tall Stack Plume, WMO symp. on boundary layer physics applied to specific problems of air pollution, 175-183, WMO-No. 510.
- Gifford, F.A., 1976: Turbulent Diffusion-Typing Schemes: A Review, Nuclear Safety, 17, 1, 68-86. Heimback, Jr., J.A., 1975: Diffusion from an elevated source over Colstrip, Montana, 68th APCA meeting paper \$75-26.6.
- 環境庁, 1975:総量規制マニュアル, 公害研究対策 センター, 138 p.
- 岡本真一,塩沢清茂,1980:拡散実験データに基づ く水平方向拡散幅についての解析,天気,27,103 ~108.

∖天気/ 27. 2.