

ITCZ 波動擾乱から熱低・台風への 発達について

1. はじめに

衛星資料を利用した熱低発生の調査では、主に大西洋 での報告がある。Agee (1972) は、 ITCZ 波動擾乱が tropical storm Anna になった例を示し、その契機は水 平風速シアによる breaking を考えている。また、Denny (1972) は、 ハリケーン・熱低および その前身の擾乱を 約3週間に互って追跡している。

「のたまわりの回像から

ここでは、衛星写真の他に、ループ・フィルム法によって求めた風ペクトル(以下 LF 風ペクトルという)を 用いて、1978年台風15号が ITCZ 内の擾乱から西進し つつ熱低・台風へと成長する 過程の 解析結果を報告す る.

2.解析

以下に,LF 風ベクトルの流線解析で現われる発散域 とループ・フィルム・ムービー(以下 LFM という)で 追跡した擾乱を表わす cloud cluster あるいは熱低が一 致することを述べる.さらに,LFM で追跡した熱低・ 台風の前身は,ITCZ 内の擾乱であったことを示す.

台風の地上天気図上の略歴にふれると、8月27日 06 Z に 10.5°N, 149.0°E で 1,006 mb の熱低となり、28日 12 Z に 16°N, 145°E 付近で台風15号となる。29日 00 Z の中心示度は 996 mb であり、29日~9月2日の間 はループを描き、以後は北西進する。

2.1. LFM 上の擾乱

写真1(口絵)に, TS 7815 の前身の熱帯擾乱が熱 低・台風へと生長する過程を示す。矢印は, LFM で追 跡した擾乱を示す。

3時間毎に1カットを撮る LFM は,日変化等の短周 期の運動もよくわかるほど連続性が高いため,写真1に 比べて擾乱の追跡がし易い.しかし,ここで扱う1週間

* Kenji Nakamura, 気象衛星センター管制課.

程度の運動は、写真1も十分に表現できる。

•中

村

健 次*

-No. 17

8月19日頃に GMS の撮像範囲に入った 擾乱は,22 日,23日,24日と西進する。23日頃から 矢印の cloud cluster を中心とする 外側の雲 パターンに曲率(直径約 10度)が生じてくる。25,27日には,その曲率が強まり 赤外の輝度レベルも上る(雲頂高度が高くなる)。27日 の写真は熱低である。28日以降は曲率半径を縮めつつ台 風へと発達している。29日の写真は台風になっている。

この過程は, Agee (1971) による breaking-----え形を した ITCZ の crest 部分が独立した循環を作る過程-----とは異なっている.

2.2. 流線解析

LF 風ベクトルは,低緯度では 150 mb 面くらいにあ たる. 観測は GMS 撮像の全域に互り,1日2回行う. それを 30°N—10°S,90°E—170°W の範囲について, 加藤 (1976)の方法で客観解析する.1度メッシュの出 力を4日平均して,25°N—5°S,95°E—175°W の範囲 につき,5度メッシュで風の分布図を作り,流線解析し た.

ここで4日平均を求めたのは、一つは南北成分の周期 は4~5日が卓越している(新田、1970)ので、その影 響を除くためである。また、LF風ベクトル算出には適 当な雲が必要なので雲の分布状態によっては、生データ の密度に粗密が生じる。それで平均的な風ベクトルの場 を求めるには、ある程度の観測回数を累積することが望 ましいからである。

この流線解析は,相対的な発散の強さおよび発散域の 代表地点を求めるために使用する。

第1図は8月21日~24日のもので、×印は東西に伸び る流線の分離帯と高気圧性の曲率をもつ領域の代表点 で,発散域を示す。

第2図は8月25日~28日のもので、×印は強い発散域 の中心を示す。第3図は8月29日~9月1日のもので、

1980年5月

な発散城を示す.

×印は第1図と同様である.図は省略したが,第1図の 直前の8月17日~20日頃は,7°N,175°W あたりに発散 域があるのが窺れる. 第5図は,流線解析による発散域,LFM 上での擾乱 および地上天気図上の熱低・台風の径路を示す. 上層発散域が同一の擾乱に因って時間とともに移動し

▶天気∥ 27.5.

70

第4図 1ヵ月平均の流線解析図(ほぼ 150 mb 面)および上層雲量図.
1978年8月.〇印で挾んだ地帯は上層(400 mb 以高)雲量20
※以上,……で囲む地域は同30%以上.ただし雲量の140°E
以西は省略.他は第1図と同じ.

第5図 流線解析,LFM および地上天気図上の擾乱の径路.×印 は4日平均の上層発散域の位置で,上の数字(小数点付) は日付.その径路を実線で示す.○印は TS 7815 の位置 で,発生は時刻も示した.●印は合風になった時.この径 路を点線で示すが,4日以後は省略.+印は衛星写真上の 擾乱の位置,対応日付は下段に記す.径路は一点鎖線.時 刻はZ時.

たとすると,第5図の×印の径路のように1日に3~4 経度の西北西進となる。

発散の強さは、流線図では8月17日~28日まで強ま り、29日~9月1日では弱まっている。この原因は、同 時刻・同地域に TS 7815 が位置し、29日~9月2日間 に1周するループを描いているので、4日平均の流線図 上では相殺されたことによる。これを考慮すると、初期 の優乱から熱低・台風へと生長するに従い、上層の発散 域が明確になってくるといえる。 第4図に,8月の平均風速場の流線解析図と,同月の 上層雲(400 mb 以高)の平均雲量分布を示す.そこで は 10°N,170°E を中心に発散域があり,またほぼ 8°N 線上を中央に雲量の多いベルトがある.これが8月の平 均的な ITCZ である.前述の上層発散域が通過する地 域は,この ITCZ にあたっている.

2.3. 上層発散域と衛星写真上の擾乱との対応

第1表に,写真および上層発散域の擾乱の位置と雲頂 高度を示す。

1980年5月

71

375

ITCZ 波動擾乱から熱低・台風への発達について

第1表 写真および流線解析(上層)による擾乱の位置と雲頂高度.第1列は8月の日付.第2,3列は、衛星写真上での位置(Aとする)で、緯度・経度.負号は西経.第4~7列は雲頂の情報で、順に T_{BB}(°C),雲頂の気圧(mb),高さ(km),および T_{BB}で表わされた雲頂の面積(0.1緯経度四方).第8~9列は上層発散域の中心位置(Bとする)の緯経度.第10,11列はA,B両者の中心位置の差で、緯経度.なお、*印は圏界面に到るを示す.また LAT,LNGの単位は度.

AUG DAY	PICTURE (A)		CLOUD TOP				WIND (B)		ERROR (B)-(A)	
	LAT	LNG	TBB	PRS	н	S	LAT	LNG	LAT	LNG
22	8	-175								
	(8)	(-178)					8	178	0	-4
23	8	180	-71.4	115	15.7	7				
24	7	170	-70.1	120	15.4	20				
25	8	161	-75.6	100	16.5	13				
26	9	158	-56.7	180	12.5	13				
	(9)	(154)					12	160	3	6
27	10	149	-80.0	*		36			-	
28	12	149	-58.6	170	13.4	8				
29	16	146	-83.1	*		53				
30	18	147	-85.1	*		13				
	(18)	(148)					15	150	-3	2
31	19	149								

S: 0.1 DEG. square

* : tropopause

第6図 地上天気図. 1978年8月29日 00 Z. 緯経線等は第1図と同じ.

両者の位置の誤差が5度前後あるが,これは主に,流 線解析が5度メッシュであることと,4日平均をとって いることによる.

ある程度の誤差を認めると、上層の発散域の実体は LFM で追跡した擾乱と一致する。

第1表にある雲頂高度の算出法は、画像データから等 価黒体温度(*T_{BB}*)を緯経度座標で出力(中村・杉本, 1980)し、代表する雲頂温度を決定して、温度対高度・ 気圧の気候値表から換算する方法である。 雲頂高度からみた擾乱の活動は,26,28日を除くとほ ぼー様に活発化し,水平部の広がりも増大している。 26,28日の停滞は写真1の雲パターンおよび輝度からも 判る。

2.4. 流線図と分解能

流線図の分解能を知るために,地上天気図(第6図) 等との対応をみよう.第3図に現われた大きな発散域を A, B, Cとする.第3図のAの位置は20°N,178°W であり,第6図の低圧部にあたり,写真1(29日)のA の部分である。第3図Bの位置は 20°N, 133°E で,第 6図の 1,000 mbの TD (29日 18Z に TS 7816 になる) および写真1のBにあたる。

第3図のCは,第6図ではまだ現われていないが, 30,31日の地上天気図の低気圧(1,004 mb)および衛星 写真で明確な cloud cluster(直径約8度)として見られ る.しかし,写真1のDは,第6図の1,002 mbのTD にあたるが,第3図ではデータ不足のため表現されてい ない.

3. おわりに

ここでは、ITCZ 波動擾乱から熱低・台風への生長す る過程の事例を解析し、次の結果を得た。

 LF 風ベクトルの発散域は、LFM 上に実在する 擾乱と一致する。

(2) 熱低の発生は、breaking の過程でなく、ITCZ内から発生した cloud cluster を中心とする外側の雲パターンの循環の強化によるものである。

(3) 初期の ITCZ 擾乱の雲パターンに曲率はないが,

 T_{BB} は雲頂高度が高いことを示している。

なお,同様の方法で1978年夏季に11 個の追跡可能な ITCZ内の擾乱を検出した。その内の8個が,第4図の 平均的 ITCZ内で,台風の発生に関与していることが 分ったが,写真1は典型的な変容の一例である。

文 献

- Agee, E.M., 1972: Note on ITCZ wave disturbances and formation of Tropical Storm Anna, Mon. Wea. Rev., 100, 733-737.
- Denny, W.T., 1972: Eastern Pacific hurricane season of 1971, Mon. Wea.Rev., 100, 276-293.
- 加藤一靖, 1976: 客観解析プログラム「OBJAN」に ついて, 気象衛星技術報告, **3**, No. 2, 1-22.
- 中村健次, 杉本清秋, 1980: VISSR 輝度分布の出 カプログラムとその利用について, 測候時報, 47, No. 1, 2, 9-19.
- Nitta, T., 1970: Statistical study of tropospheric wave disturbances in the tropical Pacific region, J. Met. Soc. Japan, 48, 47-59.

(379頁よりつづく)

コンピューター制御されたレーザーレーダーによる大 気境界層の日変化の観測

> 笹野泰弘・清水 浩・杉本伸夫・松井一郎・ 竹内延夫・奥田典夫(環境庁国立公害研究所)

コンピューター制御されたディジタルデータ収録機能 を持つミー散乱レーザーレーダーを用いて,典型的な夏 の都市域における大気境界層の日変化を観測した. 観測 された粒子状物質濃度の THI パターン表示は,時間変 化を明瞭に示し, これから大気境界層構造が推定でき る. 今回の観測結果は, Russel *et al.* (1974)の提案し た大気境界層日変化における三つの regime の他に,混

1980年5月

合層が最大高度に達した後の午後のふるまいを,第四の regime とする必要性を示唆している.

東京のヒートアイランドに伴う地上風系の性質 藤部文昭・浅井冨雄(東京大学海洋研究所)

無風に近い状態の下で,東京の都心に収束する低気圧 性の風系が存在する.平均的な風速は,約0.2 m·s⁻¹ で ある.都市内外の地上気温差が増すにつれて風速が大き くなる傾向が認められる.一方,晴れた日の日中には地 上気温差が小さいにもかかわらず風速が大きいことが見 出され,大気の成層状態や海陸風などの局地風もこの風 系に影響することが推察される.

73