551. 508. 5

GMS 風ベクトルとレーヴィン・ゾンデとの比較*

加藤政勝**

1. はじめに

===== 短報 =====

静止気象衛星-GMS から風ベクトルデータが取得されてから2年有余になる。GMS 風ベクトルデータは毎日2回(00Z,12Z)出力され1回の出力はMM法(下層,中層風),LF法(上層風)合せて300~400 個である。

本報では、これら取得された GMS 風ベクトルデータ の内,夏期(1980年6月1日~7月31日;但し、6月は 約15日間),及び冬期(1980年1月14日~2月20日)に ついて、GMS 風ベクトルとレーヴィン・ゾンデとの比 較を両者の水平距離差約300 km 以内のものについて調 査した。

GMS 風ベクトルの算出法については小平等 (1978), 浜田 (1980) に詳しく論じられている.GMS で得られ る風ベクトルは大別して下層風を算出するMM法 (人が 雲を指定し,その雲を計算機がトラッキングする)と上 層風を算出する LF 法 (雲の動画を作成し,上層雲の始 点,終点を人が指定する)の2方法によっている.前者 は30分間の雲の移動量より,後者は90分間の雲の移動量 よりそれぞれ風ベクトルを算出している.

これら GMS 風ベクトルについての 精度評価は浜田 (1980),小花 (1980),丸山等 (1980) によってなされて いる.

今回の調査は CGMS (Coordination Meeting on Geostationary Meteorological Satellite)にもとづく風計 算結果国際比較データを主に使用した。GMS 風ベクト ルとレーヴィン・ゾンデとの比較領域は0~50N,90~180 Eの北半球であり、比較可能なレーヴィン・ゾンデ地点 数は72である。レーヴィン・ゾンデは鉛直に5レベル以

- * A Comparison of Satellite Derived Cloud Wind and Rawin-Sonde Data.
- ** Masakatsu Kato, 気象衛星センターシステム管理 課
- ——1980年10月6日受領——
- ——1980年12月15日受理——

上に値があるもののみ比較の対象とした。

2. 調査方法

夏期及び冬期の GMS 風ベクトル(以下風ベクトルと称す)とレーヴィン・ゾンデの風(以下ゾンデとする) との比較は3方法によってなされた。

第1は風ベクトルの Reference-Level (風ベクトルに 付加する雲頂高度で最低温度法による。基準になる大気 の鉛直温度分布は気候値を用いている;以下単に RL と する)と近傍の ゾンデの ほぼ同高度 での 比較によるも の.

第2は下層, 中層, 上層の RL に対応するゾンデの Best-Fit-Level (風ベクトルとゾンデのベクトル差が最小 となるレベル;以下単に BFL とする)を求めるもの.

第3は下層,上層風ベクトルのそれぞれの層における 代表の RL に対応する BFL を求める

以下これらの方法により風ベクトルの精度評価を夏 期,冬期の順に述べる。

3. 夏期における風ベクトルとゾンデの比較

 3.1. 夏期における風ベクトルの RL とほぼ同レベル のゾンデとの比較

風ベクトルとゾンデの比較は、水平方向については第 1表に示す楕円の範囲内で行なった.すなわち、両者の 風の水平シャーの効果を除去する為に、風ベクトルの方 向に楕円の長軸を設定し、これに垂直に楕円の短軸をと った.又、風ベクトルの大きさによって長軸、短軸の大 きさを変えた.風ベクトルの絶対値が大きい程長軸、短 軸の比を大きくとった.

統計的処理をするにあたり,下層,中層の風ベクト ルの境界値の RL を 700mb に,中層,上層の風ベクト ルの境界値を 400 mb とした.風ベクトルとゾンデとの 鉛直方向に関しては 700 mb を境界として,風ベクトル の RL が 700 mb 以下では風ベクトルとゾンデの気圧差

1981年2月

第1表 風ベクトルとソンデの風との水平方向にお ける比較を行なう範囲を示す楕円.

風ベクトルの 風速	楕円の長軸	楕円の短軸
10 m/s 以下	225 km	175 km
10~25 m/s	250 km	140 km
25 m/s 以上	300 km	100 km

尚,風ベクトルの RL が 700 mb 以下のものは (225, 175 km) の楕円を採用する.

が ±35mb, 700mb 以上においては ±50mb に入るもの のみ比較の対象とした. 又, 風ベクトルとゾンデのベク トル差の絶対値(以下, 両者のベクトル差の絶対値を単 にベクトル差と表現する)が 30 m/s 以上のものは除外 した(30 m/s 以上を除去しないで計算機処理をしたもの とそうでないものの差は, データ数が多いときは大して 変化なく 1 m/s 内外である. 尚, この閾値のあるなしで の対比は CGMS のデータを参照して欲しい).

又、亜熱帯ジェットの位置を考慮し低・中緯度の境界

Summer ; June 1 - July 31 1980

8

図左は低緯度,右は中緯度. ×:BFL での比較値 ・:RL での比較値

M/S -

12

-: 風ベクトルとゾンデのベクトル差の絶対値

---:風ベクトルとゾンデのベクトル差の平均自乗偏差 (RMS)

16

第1図 夏期における風ペクトルの RL とほぼ同レベルのゾンデとの比較及び BFL での比較.

I:上・中・下層に分割した各層における平均の RL, BFL に対する RMS

の水平方向にお
を25Nとし、南を低緯度、北を中緯度とした。後述する
が、この境界のとり方は冬期の上層風ベクトルで有効で
ある(この期間の高層天気図によれば、亜熱帯ジェット

の平均的位置は25N付近である).

3.1.1. 夏期低緯度における比較

第1図左側丸印で示したものが3.1節で述べた条件の 下に求めた各層の平均のRL及びベクトル差に関する量 である。

縦軸は RL に関する量 (mb) で丸印の位置は各層の 平均の RL, 縦棒(I)はその RMS (Root Mean Square) である.

横軸は風ベクトルとゾンデとのベクトル差 (m/s, 実線), 及びその RMS (点線) である

これによれば、上層の平均の RL は約 144mb, RMS は約 39 mb である. このレベルでの ペクトル差は約 9 m/s, その RMS は 11m/s と風ベクトルのスピードの平 均値 16 m/s (図示しなかった) に比して大きい.

すなわち、上層風ベクトルを、その RL における風と みなすとゾンデ風との差が大きいことを意味する。

34

16

12

4

M/S

中層風ベクトルの平均の RL は約 613 mb, RMS は 102 mb と大きく, このレベルでのベクトル差は約 6.5 m/s で RMS も約 9 m/s と大きくばらついている.

下層風ベクトルの平均の RL は約 738 mb, RMS は 約 55 mb, そのレベルでのベクトル差は 4.0 m/s, RMS は 5.4 m/s と中・上層に比してベクトル差に関する量が やや小さくなっている. しかし, ここでは示さなかった が下層風ベクトルのスピードの平均値が 7.1 m/s である ことを考えると, これらの量は中・上層に比して大きな 値である.

以上,各層における風ベクトルのRLと同程度の高度 のゾンデとのベクトル差がかなり大きいことがわかる.

3.1.2. 夏期中緯度における比較

第1図右側丸印で示したものが中緯度におけるもので、図の見方は低緯度に準ずる.これによれば、中緯度 上層の平均のRLは約163mbと低緯度に比して約20mb 値が大きく(高度が低く)、RMS は約44mbと低緯度 と同程度である.このレベルでのベクトル差は約10m/s、 RMS は12m/sと低緯度同様大きい.

中層における平均の RL は 600 mb で, RMS は約 92 mb である. このレベルでのベクトル差は 7.1 m/s, RMS は 7.9 m/s と RL, 及びベクトル差に関する量と も低緯度と同程度である.

下層の平均の RL は約 747 mb, RMS は約 43 mb, そのレベルでのベクトル差は 4.9 m/s, RMS は 6.3 m/s となっており,これらも低緯度下層と同程度である

3.2. 夏期における風ベクトルの RL に対応する BFL

風ベクトルとゾンデの風との水平方向の比較の方法は 第1表による。下・中層の風ベクトルの RL の境界値は 3.1 節と同様 700mb に、中・上層の境界値を 400mb に 設定した。

鉛直方向に関しては 3.1 節と異なり,風ベクトルのRL に対しそのレベルの± 100 mb 内の ゾンデに BFL が 見 出されるときにのみ,その風ベクトルの BFL とみなす.

低・中緯度の境界を3.1節と同様に25Nとした。尚, 風ベクトルとゾンデとのベクトル差が30m/s以上(3.1 節で述べた理由により)のものは除去した。

3.2.1. 夏期低緯度における比較

第1 図左側×印で示したものが3.2 節で述べた条件の 下に求めた各層の RL に対応する BFL, 及びそのレベ ルでのベクトル差である.

3.1.1 節で述べた平均の RL (同図丸印) と比較しな がら述べる.

第1 図によれば上層の BFL は約 172mb で平均の RL 144 mb よりも 30 mb 程度値が大きい。BFL の RMS は約 40 mb である。BFL での風ペクトルとゾンデとの ペクトル差は 4.0m/s, RMS は 4.8m/s と平均の RL で の場合よりかなり良くなっている。

中層の BFL は約 640mb で RMS は約 88mb, ベク トル差 2.2 m/s, RMS は 3.1 m/s と上層と同様よくな っている.

下層の BFL は 780mb と, 平均の RL に比して 40mb 程度値が大きい. ベクトル 差に 関す量は 上層と同様よ い.

以上のように各層とも風ベクトルの平均の RL に比し て BFL は 30~40mb 値が大きく(高度が低く)なって いる。

3.2.2. 夏期中緯度における比較

第1図右側×印で示したものが3.2節で述べた条件で 求めた各層の BFL とベクトル差である.

上層の BFL は約 195 mb と平均の RL 163 mb (同図 丸印) よりも約 30mb 値が大きい. このレベルでのベク トル差は 4.6m/s, RMS は 5.8m/s と 3.1.2 節のもの に比して大幅によくなっている.

第2表 下・上層風ベクトルの BFL 及びベクトル差

ルとソンテの比較は有口頃以内					
	領	城	デー タ数	B.F.L.	風ベクトルとゾ ンデとのベクト ル差の絶対値の 平均
下層	0-2	25 N	36	780 mb	1.3 m/s
>700 mb	25-1	50 N	21	762	1.1
上層	0-2	25 N	182	172	4.0
<400 mb	25-5	50 N	364	195	4.6

夏期 (1980年6月1日~7月31日): GMS 風ベク	٢
ルとゾンデの比較は楕円領域内	

冬期 (1980年1月14日~2月20日): GMS 風ベク	ト
ルとゾンデとの比較は距離差 310 km 以内	

	領域	デー タ数	B.F.L.	風ベクトルとゾ ンデとのベクト ル差の絶対値の 平均
下層	0-25 N	229	866 mb	2.8 m/s
>700 mb	25-50 N	240	869	3.2
上層	0-25 N	357	197	4.3
<400 mb	25-50 N	276	285	5.0

1981年2月

中層の BFL は約 590mb で平均の RL 600 mb と同 程度である。しかし、RMS が約 123 mb と大きく、中 層での BFL がばらついていることを示す。

下層の BFL は 762 mb と下層の平均の RL 747 mb に比して 15 mb 程値が大 きく, RMS は 59 mb であ る. このレベルでの ベクトル 差は 1.1 m/s, RMS は 1.3 m/s と 3.1.2 節に比して大幅に小さくなっている.

以上のように低緯度と同様,風ペクトルの平均の RL に比して BFL は若干値が大きく,このレベルでのベク トル差は大幅に小さくなっている。

3.2節で述べてきた夏期の下・上層における BFL に ついての諸量をまとめて第2表の上段に示す。

3.3. 夏期における下・上層の代表の RL に対応する BFL

3.2. 節では夏期における風ペクトルの RL に対応する ゾンデの BFL を求めた が、これらはあくまで RL と BFL に関する大まかで 平均的な 関係を示しているにす ぎない. したがって、 各風ベクトルの RL とその BFL についてはもう少し詳しい検討が必要である. そこで、 以下ではデータ数も多く; 比較的精度のよい下・上層風 ペクトルをそれぞれいくつかの代表の RL に分け(代表 の RL とは各層において求まった平均の RL、及びその 値に RMS を加えたもの, RMS を滅じたもの;以下代 表の RL という場合同じ意味に使う), その層に対する BFL を求める. 3.1節で求めた下・上層風ベクトルの平 均の RL に対する RMS が約 40~55 mb であるので上 で定義した代表の RL を中心に ± 50 mb の範囲の RL について, それぞれの BFL を求めることにする. この ような処理では, 各代表の RL ± 50 mb のデータは重 複して計算機処理されるが, これは下・上層とも平均の RLにピークを持つことにより, 代表の RL ± 50 mb の データ数が少なくなるのをさけるためである.

風ベクトルとゾンデを比較する範囲は第1表による. 鉛直方向に関しては風ベトルの RL に対して ゾンデの BFL が ±100mb 内 (極端に RL と BFL の差がある ものを避けるため) に見出されるときのみとする.

3.3.1. 夏期低・中緯度の下層風ベクトルの代表の RL に対応する BFL

第2図が3.3節の条件で求めた下層風ベクトルの代表 の RL に対応する BFL,及びそのレベルでのベクトル 差を示す。図の左が低緯度,右が中緯度のものであ る。

低緯度に関してみると下層の代表の RL 683, 738, 793 mb に対する BFL はそれぞれ, 708, 755, 796 mb と なっており, いずれの代表の RL も BFL に比して値が 小さく, RL の値が小さい程 RL と BFL の差が大きく

第2図 夏期下層風ペクトルの RL に対応する BFL 及びそのレベルでのペクトル差の絶対値 (V.D.). 図左 は低緯度,右は中緯度.

▶天気// 28. 2.

なっている. 又, それぞれの BFLにおけるベクトル差は 1.3~1.5 m/s と小さい.

中緯度(第2図右側)では下層の代表の RL 704, 747,790mb に対する BFL はそれぞれ,719,749,774 mb と低緯度の下層に比して幾分ばらついているもの の,RL と BFL の差は小さい.又,それぞれの BFL におけるペクトル差は 0.9~1.7 m/s とかなり小さい.

尚,第2図の BFL での RMS がかなり大きくなっ ているが,これは3.3節で述べた様に代表の RLを中心 に ± 50 mb の範囲の RL に対する平均的な BFL,及び その RMS を求めたのであるから当然といえよう.

3.3.2. 夏期低・中緯度の上層風ベクトルの代表の RL に対応する BFL

第3図が上層風ベクトルに関するもので下層風ベクト ルの第2図に対応する。

低緯度の上層をみると代表の RL 105, 144, 183 mb に対して BFL は,約 170mb と RL によらない.又, BFL におけるベクトル差は 4m/s 内外である.

中緯度をみると上層の代表の RL 119, 163, 207 mb に対応する BFL は, 177, 190, 214mb と RL の値が BFL に比して小さく,両者の差は RL の値が小さい程 大きい. これは 3.1 節で述べた低・中緯度の境界を25N としたため亜熱帯ジェットがこの領域内にあるため,ジ ェットの北側及び南側の値が混在した結果と思われる 《後述する冬期の結果を参照すると). BFL におけるペクトル差は 4~5 m/s である.

4. 冬期における風ベクトルとゾンデの比較

4.1. 冬期における風ベクトルの RL とほぼ同レベル のゾンデとの比較

· -- 113

冬期における風ペクトルとゾンデの比較は 3.1 節で述 べた夏期のものと若干異なる. すなわち, 水平方向におけ る比較は風ペクトルとゾンデの 距離差が 310 km 以内の ものを対象にする. 又,風ペクトルの絶対値が 3m/s 以 下(風ペクトルの算出システムの水平方向の誤差が 2m/s 位ある),及び風ペクトルとゾンデの ペクトル差の絶対 値が 30 m/s 以上のものは比較から除外した. その他の 閾値に関しては 3.1 節と同様である.

4.1.1. 冬期低緯度における比較

第4 図左側丸印で示したものが4.1 節で述べた条件の 下に求めた下・中・上層の平均の RL とその RMS,及 び各層における風ベクトルとゾンデとのベクトル差に関 する量で夏期の第1図(左側丸印)に対応するものであ る.

冬期の低緯度の平均の RL と第1 図の平均の RL を比 較すると下・中層の平均の RL は 50~60 mb 大きく, 逆に上層は 40 mb 程小さくなっている. ベクトル差は 夏期より各層とも大きくなっているが,特に上層におい て著しい. これは水平方向における風ベクトルとゾンデ の比較が夏期と異なるため,水平のシャー効果が入って

第3図 第2図に同じ,但し、上層風ベクトル.

1981年2月

. 37

Winter ; Jan. 14 - Feb. 20 1980

第4図 第1図に同じ,但し,冬期.

きていること,画像の位置合わせから起こるシステム誤。 差*の結果と思われる。

4.1.2. 冬期中緯度における比較

第4図右側丸印で示したものが4.1節の条件の下に求 めた下・中・上層の平均の RL,及びベクトル差に関す るもので夏期の第1図(右側丸印)に対応するものであ る.

これによれば、平均の RL は夏期に比して 各層とも 50 mb 程度値が大きくなっており、ペクトル差も 4.1.1 節同様大きくなっている。しかし、ペクトル差が大きく なっているのは低緯度で述べた理由だけでなく、冬期と いうことで平均風速の増大による効果も考えられる。

4.2. 冬期における風ベクトルの RL に対応する BFL 風ベクトルとゾンデの比較はほぼ 4.1 節と同様である が,鉛直方向の比較が若干異なる.すなわち,風ベクト ルの RL に対し,そのレベルの ±200 mb 内のゾンデに BFL が見出されるときにのみ風ベクトルの BFL とみな す.

4.2.1. 冬期低緯度における比較

第4図左側×印で示したものが4.2節で述べた条件の

下に求めた各層の BFL, 及びそのレベルでのベクトル差 である.

4.1.1 節で述べた冬期低緯度の平均の RL と比較する と BFL は下層で 60 mb, 中・上層でそれぞれ 96, 90 mb 程度値が大きくなっている(高度は下って い る). 又, 各層でのベクトル差は大幅に小さくなっている.

4.2.2. 冬期中緯度における比較

第4 図右側×印は 4.2 節で述べた条件の下に求めた各 層の BFL, 及びそのレベル での ベクトル差 で ある. 4.1.2. 節の冬期中緯度の平均の RL と比較すると下層で 60 mb, 中・上層でそれぞれ 120, 40 mb 程度値が大き い. 各層での ベクトル差も 3~5 m/s と 4.1.2. 節の場合 より大幅に小さくなっている.

4.2節で述べてきたように 冬期低・中緯度共, 各層に おいて風ベクトルの平均の RL に比して対応する BFL は値がかなり大きい. 冬期の各層においての BFL につ いての諸量をまとめたものが第2表の下段である.

4.3. 冬期における下・上層の代表の RL に対応する BFL

4.2節では冬期の風ベクトルの RL に対応する BFL を求めたが、3.3節で述べた夏期と同様下層(中層のもの も一部入れた)、上層風ベクトルをそれぞれ幾層かの RL に分けその層に対応する BFL を求める。第4図から下 ・上層の RL に対する RMS が 30~70mb 位であるの

▶天気/ 28. 2.

^{*} 従来,画像の位置合わせに起因するシステム誤差が 衛星直下点で風ペクトルの南北成分で -1.4 m/s 程 度あることがわかり,1980年2月25日よりこの誤差 が除去された。

Winter Jan. 14 - Feb. 20 1980 0 -25N

⊢ : R.M.S. at B.F.L. Number of Data

Winter Jan. 14 - Feb. 20 1980 25 -50N

1981年2月

60**+**

で,代表の RL(3.3 節と同じように決定) を中心に ±50 mb の範囲の RL について,それぞれの BFL を求める ことにする.その他の比較の閾値は 3.3 節の夏期と同じ である.中層の一部もほぼ同様の扱いである.

4.3.1. 冬期低・中緯度の下層風ベクトルの代表の RL に対応する BFL

第5 図が4.3 節の条件の下に下層(中層も一部入れた)風ベクトルの代表の RL ±50mb のデータに対応する BFL, 及びそのレベルでのベクトル差を示す。図の 左が低緯度,右が中緯度である。

低緯度に関してみると、中・下層の RL の代表 662, 756, 806, 856 mb に対する BFL はそれぞれ, 723, 809, 838, 860 mb といずれの BFL も RL に比して値 が大きい. 又, それぞれの BFL におけるベクトル差は 3m/s 内外と小さい. 中緯度においては RL の 代表値 645, 757, 807, 857 mb に対して BFL は, 683, 794, 840, 862 mb とほぼ 低緯度と同じ傾向を示している. BFL における ベクト ル差は約 3 m/s である. 下層では RL と BFL がほと んど等しくなっていることに着目したい.

4.3.2. 冬期低・中緯度の上層風ベクトルの代表の RL に対応する BFL

第6図が4.3節の条件の下に求めた上層風ベクトルの 代表の RL ±50mb のデータに対応する BFL,及びそ のレベルでのベクトル差を示す。図の左が低緯度,右が 中緯度である。

低緯度の上層風ベクトルの RL の代表値 71, 106, 141 mb に対し, BFL はほぼ 145 mb と一定になっている. 又, それぞれの BFL でのベクトル差は 4~5 m/s となっている.

第3表 夏期低緯度 (0~25 N) 風ベクトルの BFL のにおける風ベクトルとゾンデとのスピード差.

NUMBER: データ数

ALG. MEAN: スピード差の算術平均 RMS: スピード差の平均自乗偏差 JUNE 1-JULY 31 1980 ABS. MEAN: スピード差の絶対値平均 MEAN SPEED: 風ベクトルの平均スピード

M/S	SFC-700 mb CUM. (%)	699-400 mb CUM. (%)	LESS 400 mb CUM. (%)
0 1	81	75	37
2 3	100	92	71
4 5		92	87
6 7		92	96
8 9		100	99
10 11			100
12 13			
14 15			
16 17			
18 19			
20 21			
GTR 21			
NUMBER	36	12	182
ALG. MEAN	0.3	0.8	1.2
ABS. MEAN	0.9	1.6	2.7
RMS	1.1	2.8	3.5
MEAN SPEED	6.9	7.9	16.6
BEST-FIT-LEVEL			
ALG. MEAN	780. 1	639.5	172.4
ABS. MEAN	780. 1	639.5	172.4
RMS	68.8	87.5	40.5

▶天気″28.2.

第4表 第3表に同じ. 但し、中緯度 (25~50N)

JUNE 1-JULY 31 1980

M/S	SFC-700 mb CUM. (%)	699-400 mb CUM. (%)	LEESS 400 mb CUM. (%)
0 1	86	70	39
2 3	100	95	73
4 5		95	87
6 7		100	95
8 9			97
10 11			99
12 13			99
14 15			99
16 17			99
18 19			99
20 21			100
GTR 21			· · · · · · · · · · · · · · · · · · ·
NUMBER	21	20	364
ALG. MEAN	0.2	0.5	1.3
ABS. MEAN	0.8	1.5	2. 7
RMS	1.0	2.1	3. 9
MEAN SPEED	5. 3	8. 3	24. 9
BEST-FIT-LEVEL			
ALG. MEAN	762.0	590.4	194. 7
ABS. MEAN	762.0	590.4	194. 7
RMS	59.0	122. 5	51.2

中緯度の代表の RL 243, 278 mb に対応する BFL も低緯度同様 283 mb 内外と RL によらずほぼ一定で ある. 又, BFL でのペクトル差は 5~6 m/s となってい る.

これら4.3 節での結果は冬期においては低緯度の上層 風は RL の値に 関係なく(但し, 前述したように RL の値が 400mb より小さいものを対象としているが) BFL は約 145mb, 中緯度においては 280mb 程度であ ることを示している。これは,低・中緯度の境界を25N に取ったが,この期間の高層天気図より平均的な亜熱帯 ジェットが25N付近にあるため,ジェットの南と北の相 違を示していると思われる。

5. 風ベクトルとゾンデとのスピード差

従来,風ベクトルとは"なんぞや"ということが言わ れてきたが,風ベクトルとゾンデ風に系統的なスピード 差があるかどうか調べた。その内の一例を第3,4表に 示す. 第3表は夏期低緯度のもので水平,鉛直方向に用いた 閾値は3.2節で述べたものを用い,BFL での比較であ る.表の上段左側は 0~1m/s, 2~3m/s,,21m/s 以上と,風ベクトルとゾンデのスピード差の区分であ り,右側はこれに該当する度数(%)の累積である.

第3表によると風ベクトルとゾンデとのスピード差は 各層とも1m/s 内外と組織立ったものはみあたらない.

第4表は夏期中緯度のもので第3表と同じ処理をした ものである。低緯度と同様,各層におけるスピード差は 1 m/s 内外と,これにも組織立ったものはない.これら の事は表示しなかったが冬期の低,中緯度に関してもい える。

風ベクトルとゾンデは観測法において,前者は40~50 km の領域の雲を時間間隔30~90分でトラッキングする という,後者と著しく異なるにもかかわらずスピード差 がほとんどないということは注目すべきである.これは 一つには,風ベクトルを求める際に観測者がインアクテ ィブな移流性の雲をトラッキングしていることの現われ

1981年2月

92

と思われる.

6. 検討

夏期及び冬期における GMS 風ベクトルの精度をゾン デとの比較によって調査した。領域を低緯度(0~25N), 中緯度(25~50N)に分け統計的な処理をした。調査結 果を表及び図で示したが、これらを求めるにあたり、ど のような条件の下に算出したか注意して欲しい。

今回の風ベクトルとゾンデの比較を風ベクトルの RL (雲頂高度)というパラメータのみを使用して求めたが, これが最適とは思われない.例えば、トラッキングする 雲の厚さ(雲の平均雲頂ないし雲低高度)等のパラメー タも入れて比較することも必要かと思う.

風ベクトルの RL をパラメータとしてゾンデの BFL を見出したが、RL 自身気候値から求めたもので風ベク トルの真の雲頂高度を表わしているとはいい難い.

一方,現在風ベクトルの RL を NMC (National Meteorological Center) のデータから求めようという計 画がある。

そうすると、その後は RL そのものの値は真値に近い ものが求まるようになると思われる(NMC のデータを 使用しての RL の値の精度を検証はしていないが、少な くとも鉛直温度分布を気候値より求める現在の も の よ り、よくなることが期待される)。

低緯度における気団は中緯度に比してより気候値に近

いと考えられるので、今回の調査の内、低緯度のものは NMC データによって RL が決定されるようになっても 有効であろう。これに比して、中緯度における RL はか なり変化すると思うので問題がある。

風ベクトルとゾンデとのベクトル差は BFL でみる限 り大きな差はない. 又,統計的な処理においてではある が,このレベルでの両者の間にスピード差がほとんどな いということは特筆されてよいだろう.

謝辞

本調査にあたって, 松本誠一 気象衛星センター 所長 よりアドバイスをいただいたこと 及び 角俊治 システム 管理課長にお世話になったことを感謝致します. 又, デ ータの集積にあたり衛星センターの職員の方々に御助力 載いたことを記します.

文 献

小平信彦,村山信彦,山下洋,河野毅,1978:静止 気象衛星 GMS (ひまわり),天気,25,245-268. 小花隆司,1980:LF 法風計算に伴う誤差,研究時

- 報, 31, 313-326.
- 浜田忠昭, 1980:静止衛星「ひまわり」の画像から の風計算, 天気, 27, 139-158.
- 丸山健人,常岡好枝,1980:衛星雲移動ベクトルと 高層データのスペクトル解析による比較例,天気, 27,41-46.