# 極値雨量強度曲線から推定した雨滴粒度分布\*

# 塩 月 善 晴\*\*

## 要旨

一雨の雨量強度データから作成される 極値雨量強度曲線から,その雨を 構成した 雨滴粒度分布を 推定す ることを試みる. 九州の対流性降雨における雨滴観測の結果を利用して, 瞬間(1 sec 間) サンプリングで の rain parameter の関係 ( $\overline{D}$ -R, k-R, M-R) をいくつか想定し,これらの組み合わせによって瞬間粒 度分布を表現する. このためには, 瞬間の雨量強度(R)のデータが必要であるが,一雨ごとに作成される 極値雨量強度曲線からそれを求める方法を示す. 降雨の各瞬間の粒度分布が表現できれば,一雨降雨内での 必要とする時間(空間)平均粒度分布(例えば,レーダ気象では,レーダの 掃引空間に ほぼ 対応する地上 の1分間の平均粒度分布)は、これらの瞬間粒度分布を必要な時間だけ重ね合わせることによって算出でき る. 本報告では,現実に起こりうると思われる瞬間 $\overline{D}$ -R(M-R)関係を7通り,瞬間 k-R 関係を8通り それぞれ想定し,これらの組み合わせ毎に(合計56通り),60個の瞬間粒度分布を表現し,それらを加算平 均することによって1分間の平均粒度分布を推定した。得られた56個の1分間平均粒度分布から,適当な判 定規準を別に設定して、もっともらしい粒度分布1個を選んだ。解析例では、求められた1分間粒度分布, 及び各1分間粒度分布から計算される R 値,Z 値による Z-R 関係は実測のものによく一致しており、こ の方法の有用性が認められる。

#### 1. まえがき

雨滴粒度分布は雨量強度をはじめとして、雨のもつ種 々の物理量(rain parameter)を決定する.雨量強度 は、重要な気象要素として古くから多くの場所で観測さ れており、雨量強度のデータのみから雨滴粒度分布を推 定することができれば、これに基づいて降雨の他の rain parameter を求めることができ、その降雨の特性をより 詳しく知ることができる.このためには、従来簡単な表 現式である Marshall-Palmer (1948)の式がよく用いら れてきた.しかし、よく知られているように、この式で は表現できない雨も沢山あり、あえてこれを適用して算 出した rain parameter も実測値との誤差が大きいもの となった.M-P式では合わないものをも表現できるも のとして、Best (1950)の式や著者(Shiotsuki, 1975) の式などがあるが、これらは粒度分布の形をよりよく表

- \* The Raindrop Size Distribution Estimated from the Rainfall Intensity Maxima Curve.
- \*\* Yoshiharu Shiotsuki, 山口大学工業短期大学部
  土木工学科.
  - -----1980年9月24日受領-----------1981年2月14日受理------

現できるけれども,式中の各パラメータは降雨のタイプ によって 変わるので,現実には 余り利用価値 がなかっ た.

一方,近年,瞬間的に刻々変動する雨滴の大きさを直 接測定する機器も開発されてはいるが,それぞれ高価な ものであり,雨量観測網に対応する観測は期待できな い.そこで,集中豪雨など雨滴観測の機会が少ないもの や,過去の雨にもさかのぼってその粒度分布を知りたい 場合には,雨量データだけからその雨の雨滴粒度分布が 知れることは甚だ都合がよい.本報告の内容は,指数型 以外に flat 型や monomodal 型の雨滴粒度分布 をも表 現できる,以前著者が提出した式を使用して,別に瞬間 雨量強度を推定,及び瞬間の降雨の rain parameter を 想定することにより,雨量データのみから適当な時空間 の雨滴粒度分布を決定することを試みるものである.

#### 2. 瞬間雨滴粒度分布の表現

瞬間(1 sec 間サンプリング)の 雨滴粒度分布(以下 N<sub>D</sub>分布)が判れば、1つの降雨の中での、色々な大きさ のサンプリング時間(空間)の平均の N<sub>D</sub>分布は、その時 間内の個々の瞬間 N<sub>D</sub>分布を重ね合わせることより得る



# 極値雨量強度曲線から推定した雨滴粒度分布

第1表 瞬間粒度分布を与えるために想定された7個の  $\bar{D}-R$  (M-R) 関係,及び8個の k-R 関係.

| 番号 LL   | $\bar{D}-R$ 関係                              | <i>M-R</i> 関係             | 番号L | <b>k-</b> R 関係          |  |  |
|---------|---------------------------------------------|---------------------------|-----|-------------------------|--|--|
| 1       | $\bar{D}$ =1.495 $R^{0.2187}$               | $M = 0.05128 R^{0.8907}$  | 1   | $k = 0.5 R^{0.2330}$    |  |  |
| 2       | $\bar{D} = R^{0.2386}$                      | $M = 0.06270 R^{0.8807}$  | 2   | $k = 0.5 R^{0.1606}$    |  |  |
| 3       | $\bar{D}$ =0.6773 $R^{0.2934}$              | $M=0.07618R^{0.8533}$     | 3   | $k = 0.9298 R^{0.2694}$ |  |  |
| 4       | $\bar{D}$ =0.1763 $R^{0.1154}$              | $M = 0.04722 R^{0.9423}$  | 4   | $k = 2.5839 R^{0.4829}$ |  |  |
| 5       | $\bar{D}$ =1.112 $R^{0.1845}$               | $M=0.05945R^{\circ.9078}$ | 5   | $k = 40.0R^{1.0}$       |  |  |
| 6       | $\bar{D}$ =0.8757 $R^{0.2881}$              | $M = 0.06700 R^{0.8560}$  | 6   | $k = 0.72 R^{0.0880}$   |  |  |
| 7       | $\overline{D}=2.330R^{0.1354}$ $M=0.04107.$ |                           | 7   | $k = 0.4 R^{0.0418}$    |  |  |
| <u></u> | · · · · · · · · · · · · · · · · · · ·       |                           | 8   | $k = 0.34 R^{0.0995}$   |  |  |

ことができる. Shiotsuki (1979) は、九州の梅雨末期の 対流性降雨での瞬間  $N_D$  分布について述べており、一応 の瞬間  $N_D$  分布の形を提供しているが、対流性降雨と一 口に言っても、発達過程の違いによって、この瞬間  $N_D$ 分布は様々の形をとるものと思われる. これ迄、 $N_D$  分 布の形として、指数型、flat 型、monomodal 型などい ろいろなものが報告されているが、これら全ての分布型 をほぼ表現できる次の(1)式 (Shiotsuki, 1975) によ って瞬間の  $N_D$  分布を表現することにする.

$$N_{D} = 10^{3} \frac{6M}{\rho \pi} D^{-3} \frac{1}{\sqrt{2\pi} \sigma} exp \left\{ -\frac{(D-\bar{D})^{2}}{2\sigma^{2}} \right\}$$
(1)

ここで,

 $N_D$ ; 雨滴の空間濃度, 個数/m<sup>3</sup>mm

M; 雨滴の占める空間含水量, g/m<sup>3</sup>

ρ; 雨滴の密度, 1g/cm<sup>3</sup>

D; 雨滴直径, mm

D; 体積平均直径, mm

 $\sigma; \overline{D}$ のまわりの標準偏差, mm

\* Shiotsuki (1976) に示したように、Np 式((1)式) に Gunn and Kinzer (1949) の雨滴落下速度の 近似式を適用して R を求め, それを Taylor 展 開すると,近似的に

$$R = 15.95 M \sqrt{\overline{D}} \left( 1 - \frac{k^2}{8} \right)$$

が得られる. この式において明らかに,通常は0.5(指数型  $N_D$  分布でこの値をとる)以下の値であ る k は無視してよいので,  $\overline{D}-R$  関係が決まれ ば,それに対応して M-R 関係を求めることが できる.

このように使用する  $N_D$ 分布式は、 $M, \bar{D}, \sigma 03$ つの パラメータを持っている。従って,瞬間の  $N_D$  分布は,瞬 間降雨の  $M, \bar{D}, \sigma$  が判れば決まることになる. なお, 本論では、 $\sigma/\overline{D}=k$  として、 *M*、  $\overline{D}$ 、 k の 3 つのパラメ ータで議論していく、第1図は九州の梅雨末期の対流性 露出 (1~3 sec) させて得た各  $N_D$  分布より求めた  $\overline{D}$ , k, M と R (雨量強度, mm/hr) との 関係である. ま た,あとで使用することになる,同時に得られた Dmax (各瞬間サンプル中の雨滴最大直径, mm)と R との関 係も示しておいた.  $\overline{D}-R$ , M-R,  $D_{max}-R$  について は, R が増えると  $\overline{D}$ , M,  $D_{max}$  はそれぞれ増大する関 係にある. k-R については, 全体的に見るとほぼ一定 としてよさそうであるが、各一雨についてみると(第1 図(e)), Shiotsuki (1976) でも指摘されたように,雨 量強度がかなり大きくなると、 k は小さくなる傾向があ る.

こうして、現在降っている降雨の rain parameter  $(M, \overline{D}, k)$  と R との関係に特定なものが見い出されれば、 この降雨のもつ  $N_D$  分布を (1) 式によって、R のみか ら決めることができる。本報告では、第1図(a)、(b) の各図に示したように、それぞれの発生頻度は判らない が、現実に起こりうると思われる7個の $\overline{D}-R$ 関係(従 って、7個のM-R 関係\*)及び8個のk-R 関係を代 表的なものとして想定した。従って、M-R、 $\overline{D}-R$ 、 k-R の組み合わせによって、合計56通りのケース毎に 一定時間瞬間  $N_D$  分布を加算し、更に平均することによ って、求める時空間の平均  $N_D$  分布を出すことができる。 得られた 56 通りの  $N_D$  分布 のうち 適当な 判定規準を

1981年5月

設定し, これによりもっとも reasonable な  $N_D$  分布を 決定することに する。7 通りの  $\overline{D}-R$  関係 (M-R 関係), 及び8 通りの k-R 関係を表にまとめたものが第 1表である。



第2図 1分間雨量強度測定に基づく,一雨内の各 降雨継続時間 Tにおける極値雨量強度(R (T))データの直線近似.

(a) R (T)=exp (KT<sup>-N</sup>). 図中の各印
 は図(b)のものに対応.

(b) R(T)=K'T<sup>-N'</sup> (Sherman タイプ)
 各降雨の名前は第2表参照。

## 3. 瞬間雨量強度の推定

最近開発されている瞬間雨量計や瞬間の粒度分布を直 接測定する機器があれば、瞬間の雨量強度を直接求める ことができるが、ND分布を過去に迄さかのぼって評価 しようと言う試みをすすめるためには、過去の雨量計資 料から瞬間雨量強度を推定できる方法があれば便利で ある、気候学あるいは水文学の分野では、古くから、各 降雨継続時間の雨量強度の極値分布に規則性があるこ とが議論されてきた。例えば、Köppen (1904)、Tolbot (1891)、Sherman (1905) などの式がそれである。最近 Sumuer (1978) は Sherman タイプの極値雨量強度曲 線による、対流性降雨の1分間最大雨量強度の推定に好 結果を示した、岩井、石黒 (1970)の研究では、日本各 地で、どのタイプの極値雨量強度曲線があてはまるかに ついて詳しい報告があるが、結局はこの曲線も降雨のタ イプの相違によって様々の形をとるものと思われる。

本論では、精確な極値雨量強度曲線を求めるのが目的 ではなく、使用し易い曲線を求めておけばよいので、一 応どのタイプの曲線もグラフ上で直線化できる次の式で 統一した。

$$R(T) = exp\{KT^{-N}\}$$
(2)

ここで,

- R(T);一雨の雨量データから得られる,一雨の中で の任意の降雨継続時間に対する最大雨量強度, mm/hr
  - T; 降雨継続時間, hr

K, N; 正の定数

第2図(a)は後述の解析例で取り扱われる,各ケー スの降雨強度データの(2)式のあてはめを4例ほど示 したものである.なお比較のために, Sherman type



第2図 (c) 2~10秒間雨量強度測定に基づく R(T)-T 関係. 降雨ケース(a), (b), (c)はそれぞれ1979. 7.10. 1100~1110, 1979. 7.1. 1639~1648, 同日1435~1504 に宇部市山口大学構内で測定された対流性降雨

 $(R(T)=K'T^{-N'})$ のあてはめを示したものが、第2図 (b)である。Sherman typeの R(T)関係では完全に 直線化できなくても、(2)式の R(T)曲線ではほぼ直 線近似できることが判る。この4例ではT=1分以上 でR(T)曲線を決めているが、本論ではこのR(T)曲 線が更にT=1 sec 迄拡張して成り立っていると仮定す る。実際の観測例は少ないが、2~10秒間おきの第2図 (c)の瞬間雨量計の観測データでは、秒単位でのR(T)曲線が成立しており(Ubeの観測)、今回はとりあえず この仮定が許されていいであろうとして議論をすすめ る。精確なR(T)曲線については、今後データの蓄積 を待って改良するつもりである。

こうして,一雨の雨量強度データから取り出せる任意 の降雨継続時間 T, 例えば T=1 分間, 2分間, ……, 10分間, ……での雨量強度の最大値, 即ち, 最大1分間 雨量強度値, 最大2分間雨量強度値, ……, 最大10分間 雨量強度値, ……を T に対し, *ln* (log R)-log T グ ラフ上にプロットし, 直線近似できれば極値分布は(2) 式で示すことができる.

いま逆に一雨での極値雨量強度曲線があらかじめ判っ ている時, T=1分, 2分, ……, n分 (n は自然数) で の最大雨量強度値を R(1), R(2), ……, R(n) とし, それらを構成する 各1分雨量強度 r(t)\* を, 各1分の 時間中央値 t=0.5分, 1.5分, ……, (n-0.5) 分で示 すと, t=n のとき, R(T) と r(t) の間には次の関係 がある.

$$R(n) = \frac{r(0.5) + r(1.5) + \dots + r(n-0.5)}{n}$$
(3)

従って極値雨量強度曲線が得られていれば,通常の雨量 計自記紙に描かれるような,各時刻に対応する雨量強度 が判らなくとも,(2)式の極値曲線から,時刻の順番 ではなくなったが,ほぼ雨量強度の大きさの順番に並ん だ,一雨の中で得られる各1分毎の雨量強度 r(t)は (3)式より

$$r(n-0.5) = nR(n) - \sum_{n=1}^{n-1} r(n-0.5)$$
 (4)

として得られる.

同様にして, *t* に対して秒単位をとれば, 各1秒間の 雨量強度を(4)式で得ることができる. こうして各瞬 間の雨量強度が判れば、第2節で示した方法で $M, \bar{D}, k$ が用意ができ、例えば一雨の中で最大1分間雨量強度を もたらした雨滴群の $N_D$ 分布は、最大1秒間雨量強度を もたらした1秒間 $N_D$ 分布から次々に1秒毎に60番目迄 の1秒間 $N_D$ 分布を加算し、それを60で割り算すること によって得る事ができる。

## 4. 最適 N<sub>D</sub> 分布決定のための判定規準

計算では総計56通りの  $N_D$  分布を推定することになる ので、この中より最も現実的な  $N_D$  をとり出す必要があ る.いろいろな試みの中から、結局、次の様な 4 つの条 件でほぼ満足すべき  $N_D$  を選び出せるものと判断した.

- ① 実測の雨量強度値に対して,推定された No 分布 によって計算される雨量強度の値の相対誤差が± 5%以内にあること。
- ②  $N_D$  分布式((1)式)は、各直径の雨滴群が占め る空間含水量が正規分布となっていることを示 し、kはこの分布の相対的広がりを意味してい る。Shiotsuki (1975)で述べた如く、通常の場合 kは  $N_D$ が指数分布の時、0.5で最大値をとる。 従って、推定された各  $N_D$ の k値は  $k \le 0.5$ で あると規定された。
- これ迄報告された、世界各地の色々なタイプの降雨での N<sub>D</sub> 分布では、雨量強度 がある程度(数mm/hr 以上)となると、殆どのものが、雨滴直径1mm 附近では 10<sup>4</sup>>N<sub>D=1</sub>>10<sup>2</sup> m<sup>-3</sup>mm<sup>-1</sup>となっている。ここでは、D=0.75mm で 10<sup>4</sup>>N<sub>D</sub> =0.75>10<sup>2</sup> という条件を設定した。
- ④ 以上3つの条件で56通りのうち大半のケースが捨てられ、残ったケースから最適なものを選ばなければならない、最大径(Dmax)での雨滴空間濃度 NDmax は、雨滴のサンプリング面積(s)及び時間(t)によって変化するが、例えば、強い対流性降雨で最大1sec雨量強度のとき S=100 cm<sup>2</sup>、 t=1sec、雨滴の読み取り幅 4D=0.25 mm で、 直径5 mm 以上の大きさの Dmax の雨滴1 個が 観測されたとすると、Dmax の雨滴の落下速度は約10 m/sec としてよいので、

$$N_{Dmax} = \frac{1}{100 \text{ cm}^2 \times 1 \text{ sec} \times 10 \text{ m/sec} \times 0.25 \text{ mm}}$$
  
= 40 m<sup>-3</sup> mm<sup>-1</sup> (5)

となる. 一方推定値の方の  $N_{Dmax}$  は第1図(d) で示した  $D_{max} - R$  プロットの 平均状態の 関係

1981年5月

<sup>\*</sup> r(t) は、最大1分雨量強度が生じた時刻(t=0.5) を中心にして、 前後の1分毎の 雨量強度値で、 時刻の順番ではなく、最大n分雨量強度値 R(n) を構成する順に並び替えられている。





第3図 (1)~(8)第2表の各降雨(図中に降雨名あり)についての、1分間最大雨量強度を示した空間の N<sub>D</sub>分布の代表例毎の推定例、大きい黒丸印はそのうちから最適と判断された N<sub>D</sub>分布、ヒストグ ラムは雨量強度がほぼ同じの実測の1分間粒度分布、LL、L は第1表に示したケース番号。

1981年5月

| 第2表 解析例として使用された各降雨 |
|--------------------|
|--------------------|

| 降雨名           | 降雨タイプ                     | 網測日及水場所                | 如玉子                      | R (T) 曲線 |        | D <sub>max</sub> 值 (mm) |              |  |
|---------------|---------------------------|------------------------|--------------------------|----------|--------|-------------------------|--------------|--|
|               |                           |                        | 1972, (AU) - 43          | K 值      | N 值    | 観測値                     | 推定值*         |  |
| HIT (b)       | 寒冷前線(雷を伴う)                | 人吉市 1969. 7. 13        | Shiotsuki (1974)         | 3. 903   | 0.0713 | 7.0                     | 7.99         |  |
| HIT (c)       | 寒冷前線                      | 人吉市 1969. 7. 13        | Shiotsuki (1974)         | 3. 339   | 0.0674 | 4.6                     | 5.91         |  |
| HIT (g)       | 寒冷前線                      | 人吉市 1969. 7. 13        | Shiotsuki (1974)         | 3. 945   | 0.0572 | 5.2                     | 6.71         |  |
| <b>U</b> 517  | 寒冷前線<br>(雷, <b>雹</b> を伴う) | 宇部市 1979. 5. 17        | 著者                       | 2.957    | 0.0914 | 6.0                     | 6.62         |  |
| <b>U</b> 729  | 梅雨前線                      | 宇部市 1980. 7. 29        | 著者                       | 3. 561   | 0.0451 | 4.3                     | 5.03         |  |
| SEI 8/1       | 雷雨                        | 群馬県 1974. 8. 1         | 清野他 (1976)               | 1.828    | 0.1530 | 6.2                     | <b>6.</b> 87 |  |
| SEI 8/7       | 雷雨                        | 群馬県 1974. 8. 7         | 清野他 (1976)               | 2.192    | 0.1289 | 6.0                     | 6.70         |  |
| D & H<br>10/8 | 寒冷前線(雷を伴う)                | 米国, ミシガン州<br>1959.10.8 | Dingle & Hardy<br>(1962) | 3. 462   | 0.0347 | 3.8                     | 4.37         |  |

\* R(T) 曲線において、T=1 sec の時の雨量強度 R を求め、 更に  $D_{max}-R$  関係 (第1図) により  $D_{max}$  値を 決定した.



第4図 各降雨についての、1分間 No 分布に基づく、実測(実線)と測定(記号でブロット)の Z-R 関係の比較。

 $D_{max}=1.380 R^{0.2509}$ を推定  $N_D$  分布に適用して求 めた.得られた56通りの  $N_D$  分布において,大き い雨滴程,各 rain parameter への影響は大きい ので,推定の  $N_{Dmax}$  値が大きい程現実の雨の特 性をよく表現 すると考えるのであるが,(5)式 によって計算される値を越えても非現実的である と考えられる.何故なら, $D_{max}$  となる雨滴は,

1個観測されるのが普通であるからである。しか し、本論では、(5) 式の *4D*=0.25 mm がかな り広く、この間に2個観測されるケースも珍しく はなく、且つ  $D_{max}$  が 5 mm 以下となって、 Dmax 雨滴の落下速度が小さくなる場合も考慮し て、最大 1 sec 雨量強度の時の N<sub>Dmax</sub> 値の1 sec サンプリング空間での上限値を(5)式の2 倍の 80 m-3mm-1 とした。従って,最大1分雨 量強度の時点での1分サンプリング空間では 80/  $60 < 2 \text{ m}^{-3} \text{mm}^{-1}$  であるので、この  $2 \text{ m}^{-3} \text{mm}^{-1} \hat{v}$ 上限とした。従って推定される Nomax 値が1 sec サンプリング空間で 80m<sup>-3</sup>mm<sup>-1</sup>、1分サンプリ ング空間で 2m-3mm-1 より小さいものを選びだ し、更に Dmax 値の推定値そのものにも誤差があ ると思われることから、推定した Dmax 値附近の 雨滴の No 値が最も大きい No 分布を最適とし た.

#### 5. 解析例

以上の方法を,著者の観測したケース5例,及び1分 間雨量強度の時間変化並びに粒度分布が明示されている Dingle and Hardy (1962)の1例,清野他 (1976)の 2例,計8例の降雨について適用した結果について述べ る.

第2表にはこれらの降雨の特徴をまとめて示している。第3図には8個の降雨例について、判定基準①~③

\*天気/ 28.5.

で生き残った各  $N_D$  分布 (最大1分雨量強度を示した時 の空間  $N_D$  分布)と,それらから判定基準④で選び出され た最適の推定  $N_D$  分布 (大きな黒丸印) 及び実際の降雨 内で得られた雨量強度がほぼ匹敵する実測の  $N_D$  分布 (ヒストグラム)を示している。第3 図の各図から, 今回の方法で推定した  $N_D$  分布は第2表に示したように 推定  $D_{max}$  値がいずれも過大評価であったにもかかわ らず,実測の  $N_D$  分布をかなりよく再現していることが 判る。第4 図 には,各例毎の最適瞬間 rain parameter 関係で計算される降雨内の各1分空間のZ (レーダ反射 因子)の値を雨量強度 R に対して ブロットしたもので ある。 図には実測の Z-R 関係を直線で示 している が,SEI 8/7 の例を除いて,殆どの例で推定した Z-R関係は実測のものにかなり近いことを示している.

## 6. あとがき

以上の如く、雨量強度のデータのみから、その降雨を 構成した雨滴粒度分布を推定する方法と、その適用例に ついて述べた.実測のものと比較して、推定した粒度分 布及びそれから計算される Z 値はよく再現されており、 この推定法の有用性が確かめられた.今回は、比較的雨 量強度の大きい対流性降雨への適用例を示したが、この 方法は、レーダ雨量の精度向上、降雨系の構造解析、及び 雨滴粒度分布の年変動や地理的変化等の気候学的解析へ 応用できるものと期待され、今後はより精確な R(T)曲線の型、 $D_{max}-R$ 関係を求めるとともに、他のタイプ の雨、例えば山岳性降雨、地雨などの弱い雨、また反対 にいわゆる集中豪雨など特異な雨への適用も行なって、 この推定法をより完全なものとしたい.

計算は山口大学計算センター,九州大学計算センター で行なった.資料解析には本学の奈尾久美恵嬢の協力を 得た.記して謝意を表する.

#### 文 献

Best, A.C., 1950: The size distribution of rain-

drops, Q.J. Roy. Met. Soc., 76, 16-36.

- Dingle, A.N. and K.R. Hardy, 1962: The description of rain by means of sequential raindropsize distributions, Q.J. Roy. Met. Soc., 88, 301-314.
- Gunn, R. and G.G. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air, J. Met., 6, 243-248.
- 岩井重久,石黒政儀,1970:応用水文統計学,森北 出版,東京,370.
- 清野 豁,八木鶴平,小元敬男,1976:雷雨エコー 城内の雨滴粒度分布の差異について,国立防災科 学技術センター研究報告,15,9-22.
- Köppen, W., 1904: 岡田武松著「気象学」岩波書 店, 東京 (1927) に依る.
- Marshall, J.S. and W. Mck. Palmer, 1948: The distribution of raindrops with size, J. Met., 5, 165-166.
- Sherman, O.W., 1907: Maximum rates of rainfall at Boston, Trans. ASCE, 58. (岩井・石黒 (1970) に依る.)
- Shiotsuki, Y., 1974: On the flat size distribution of drops from convective rainclouds, J.Met. Soc. Japan, 52, 42-60.
- —, 1975: An equation for size distribution of precipitation elements based on the normal distribution of liquid water content, Ibid, 53, 75-86.
- ----, 1976: An estimation of drop-size distribution in the severe rainfall, Ibid, 54, 259-263.
- —, 1979: Instant shape of raindrop size distribution and its rain prameter relations in the convective rainfall, J. Fac. Sci., Hokkaido Univ. Ser. VII, 6, No. 1, 69-78.
- Sumner, G.N., 1978: The prediction of shortduration storm rainfall intensity maxima, J. Hydrology, 37, 91-100.
- Talbot, A.N., 1891: Rate of Maximum Rainfall, Technograph No. 5, Univ. of Illinois. (岩井・ 石黒 (1970) に依る.)