黄砂粒子の輸送とその空間的ひろがり―1979年4月に みられた黄砂現象のレーザレーダ観測―*

岩 坂 泰 信** 箕 浦 宏 明*** 長 屋 勝 博** 小 野 晃**

1. はじめに

⁻黄砂現象は、すでになじみ深い現象のひとつであり、 気象学的にも種々の観点から研究されてきた(例えば、 Isono et al., 1959; Ishizaka, 1973). しかし, この現象 の空間的な拡がりや、その時間的変化については、地上 からの目視観測にもとずくものがほとんどであったた め、十分に情報が得られなかった場合が多かった. それ 故、黄砂現象に関心が寄せられていながらも本格的な研 究がなされずに来た点も多く残っている. 太陽あるいは 大気の放射過程に与える砂塵嵐の影響に関する研究は, その例のひとつであろう.人工衛星によって砂塵嵐の様 子(とりわけ、水平の規模や継続時間等に関して)が観測 されるようになり, 除々に研究がはじめられてきたとい えよう (例えば, Carlson and Prospero, 1972; Carlson and Caverly, 1977; Jaemicke and Schütz, 1978; Yaalon and Ganor, 1979). さらには, 地球化学的分野が挙げ られる. この分野では、砂塵嵐で大気中へまきあげられ た土壌粒子が、物質のグローバルな循環や収支に大きな 影響を与えていると考えられている。海底堆積物の化学 分析を行う上で,大気から海洋へ輸送される土壌粒子の 量や化学成分に関心を払うべきであると考えられるよう になったのはごく 最近のことである. 当然のことなが ら、土壌粒子の輸送プロセスや空間的なひろがりには強

- * The transportation and spacial scale of dust strom, KOSA. —A case study on the dust storm of April 1979 measured by lidar—
- ** Yasunobu Iwasaka, Katsuhiro Nagaya, and Akira Ono, 名古屋大学水圈科学研究所.

*** Hiroaki Minoura, 豊田中央研究所.
——1981年5月21日受領——
——1982年1月25日受理——

第1表 黄砂のレーザレーダ観測.

場所:名古屋 (35°N, 137°E).
時間:1979年4月10日 17:41~19:54
1979年4月14日 18:35~22:15
レーザの波長及び出力:0.6943 μm~0.1J/pulse
レーザパルスのくりかえし:0.2 sec ⁻¹
データ表示:対流圏中層と下層は、Aスコープ表示
(トランジェントレコーダ への とり込
みは, 50 nsec のゲート幅で行う). 対
流圏上部から成層圏は,フォトンカウ
ンティング法によった.

い関心がよせられている(例えば, Duce et al., 1980). ここでは、レーザレーダ観測によって得られた結果と 気象衛星「ひまわり」によって得られた可視画像をもと に、1979年4月中旬、日本各地で見られた黄砂につい て、その輸送過程や大気中へのloading量を検討してみ る.すでに何人かの研究者によって、気象衛星の画像を もとに黄砂の輸送について議論されている(Ing, 1972; 石坂, 1979;村山, 1980).しかし、土壌粒子の大気中 への放出量や輸送過程についてもっと立ち入った議論を するには、粒子の垂直方向の分布状態を知る必要があろ う.さいわい、良好な状態でレーザレーダ観測を行うこ とが出来たので、気象衛星の画像データと組み合わせる ことによって、三次元的な把握が可能となった.

1. "黄砂"時のレーザレーダ観測

1979年4月10日及び14日前後,日本各地で顕著な黄 砂が見られた.名古屋大学水圏科学研究所では,4月10 日及び14日の夜間,地上近くから成層圏高度までのレー ザレーダ観測を行い,黄砂粒子の分布状態を観測した.

1979年4月10日及び14日の後方散乱係数の鉛直分布.フォトンカウティング法によった分とAスコープ 表示によった部分を接続して得た.

観測時の条件は第1表にまとめてある. レーザレーダ観 測から求められた後方散乱係数を, 空気分子によるもの とそれ以外のエアロゾルや黄砂粒子による成分に分離す る際に、いわゆる"Matching Method"を用いた(例え ば, Russell et al., 1977). そのようにして得られた粒子 状物質による後方散乱係数の高度分布が,第1図(a), (b) に示してある. この後方散乱係数には, 黄砂粒子 による散乱成分の他に、これらの高度に通常存在してい るエアロゾル粒子の寄与も含まれている. ただし黄砂時 以外では、エアロゾル粒子による後方散乱係数は約10-8 cm⁻¹sr⁻¹ (2~3 km 高度) 程度であり、この場合には十 分無視出来る大きさである. 観測中は, 上空には雲がな かったことを目視等で確認した。第1図の結果には、地 表近くと、高度約 6 km に粒子状物質による後方散乱係 数のピークが示されている. このピークが黄砂現象に関 係があるか否か、黄砂粒子の輸送を考える上で興味ある 点である. 今までに, 高層風の解析等によって 5 km 以 上の高度にまで黄砂現象が及んでいることが確かめられ た例として, 荒生等による 1973年の黄砂 (1979), や大 西洋上での Sahara ダストの観測 (Gringel and Mühleisen, 1977) 等が挙げられる.

4月10日及び4月14日の観測の際,散乱係数の極大値 を示した高度の気塊について,等温位面上の流跡線解 析を行った結果を第2図に示した。両日ともほぼ似たよ うな傾向をもち,下層のピークを含む気塊は,Gobi砂 漠,黄河流域の上空を,上層のピークを含む空気塊は, Takla-Makan砂漠,Zungalia 盆地の上空を通ってきた ことがわかる。

石坂等によれば、1979年4月14日前後に名古屋で採集 された Dust 粒子の X線回折像は、 これらの 粒子が 黄 河流域に起源をもつと同定され得ることを示 してい る (1981). このことは、レーザレーダで観測された下層の 粒子層を含む空気塊が、黄河流域の上空を通ってきたと 考えられることと対応している.これに加えて,気象衛 星「ひまわり」の可視画像と地上実況からは、4月14日 前後に日本へ達した 黄砂 は, 黄河流域が 起源ではなく Takla-Makan 砂漠に発生した 砂塵嵐 が起源になってい るように見える(石坂, 1979). 一見矛盾するかのよう に見えるこの結果も、前述した流跡線解析の結果を合わ せて考えると理解しやすい. Takla-Makan 砂漠で発生 した砂塵嵐は、名古屋上空でとらえられた高度 6 km 近 くに見られる 後方散乱係数 の極大値と 対応 しそうであ る.一方黄河流域でまきあげられた砂塵は、Takla-Makan 砂漠でまきあげられた砂塵の像と重なる(但し 高度はちがう)ようにして 人工衛星 の 画像 にとらえら れ,一見すると砂塵嵐は Takla-Makan 砂漠で発生し,

◎天気″29.3.

36

第2図(a)

第2図(b)

4月10日 及び14日に飛来した dust についての 400 mb, 850 mb 面上での流跡線, 線上の各点は12時間 ごとの気塊の位置を示す. トーンをつけた部分は主な砂漠の位置. P.T. は Potential Temperature (温 位)の略.

その砂塵嵐によってまきあげられた黄砂粒子が直接日本 上空へ飛来したが如く見えたと考えられる.この時期の 風の場の解析結果も上述した結果を支持している.即ち,

1) 4月7日より14日までの間, Takla-Makan 砂漠 周辺の 地上及び 850 mb 面において 風の場を 検討 する と, 流跡線が日本まで達するような風の場はなく, この ような下層風によって直接的に Takla-Makan 砂漠から 日本へ粒子が 運ばれたとは考えにくい. 一方 400~500 mb 面では 30 kt 前後の西よりの風が定常的に吹いてお り,何らかの優乱によって黄砂粒子がこの高度まで運ば れた場合には, この風によって日本上空まで直接的に輸 送される可能性がある.

 2) 黄河流域から Gobi 砂漠にかけては、地上付近から 850 mb 高度まで 20~30 kt の風が 支配的 であり、 これより上空では 50 kt 以上の西風が吹いている。

レーザレーダ観測によって得られた,粒子状物質の後 方散乱係数の高度プロファイル,流跡線解析の結果,気 象衛星「ひまわり」の画像解析の結果,風の場の解析結 果,及び名古屋でサンプリングされた黄砂粒子のX線回 折像の解析結果(石坂他,1981)を総合してみると,少 なくとも1979年4月14日前後に日本各地で見られた黄砂 現象は,発生源の異なる粒子の集団が同時に日本に飛来 して作られた現象であり,各地に降下した粒子のほとん どは,黄河流域に発生源をもつものであると考えられ る.加えて Takla-Makan 砂漠に発生したと考えられる 砂塵嵐は,何らかの機構で砂塵を400 mb 面ぐらいまで まきあげ,定常的にその高度で吹いていた西風によって 日本上空まで運ばれた可能性が高い.

2. 黄砂の規模

砂塵嵐によって、どれぐらいの量の砂塵が大気中に放 出されているのか、また現象のひろがりや持続時間がど の程度のものであるか等の問題に答えるには、今後数多 くのケーススタディを重ねる必要があるが、多方面から 観測された1979年の4月の黄砂現象にのみ的をしぼって 考えてみたい. 4月14日の黄砂は広く日本上空にひろが って通過しており、人工衛星「ひまわり」の可視画像か ら判断して,名古屋におけるレーザレーダ観測値は黄砂 が占めている水平の中心部に近い部分を見ていると考え てよさそうである.いい変えるなら垂直方向の構造を考 える時の代表値とみなして良いであろう、地表面近くの 黄砂粒子の直接サンプリングが、石坂等によって実施さ れた. 採集地点は名古屋で, アンダーセン・エアロゾル・ サンプラー (2000 INC 社製, 21-000型) を用いて粒径 別に分級採集された.なお採集期間は1979年4月11日15 時から17日9時までの間であり、この間に名古屋地方で 最も強い黄砂現象を見た14日及び15日が含まれている。 名古屋地方で通常見られるエアロゾル濃度及び粒径分布 を加味して評価された黄砂粒子の粒径分布は、現在のと ころ類似の現象に対して粒径分布関数の高度依存性につ いて情報がほとんどないため、この点は無視した、この 結果及び荒生等によって得られた黄砂粒子の粒径分布に 関する結果を参考にして、次のような粒径分布関数で代 表させた.

1982年3月

233

	China Dust Upper layer Lower layer	Sahara Dust		
		Gringel and M	uhleisen (1977)	Prodi and Fea(1979)
Altitude of the layer	4-8 km 0. 5-2. 5 km	1.2-3.7 km	1.7–3.7 km	
Particle concentration	50. 5/cm³ 255/cm³	in the order of 100/cm ³		100-500/cm ³
Mean mass concentration	1.36×10 ⁻¹⁰ g/cm ³ 6.08×10 ⁻¹⁰ g/cm ³	$1.6 \times 10^{-10} \text{g/cm}^3$	$1.2 \times 10^{-10} \text{g/cm}^3$	$1.54 \times 10^{-10} \text{g/cm}^3$
Dust per cm ² , vertical air column	$1.76 \times 10^{-4} \text{g/cm}^2$	$4 \times 10^{-4} \mathrm{g/cm^2}$	2.5×10 ⁻⁴ g/cm ²	$0.833 \times 10^{-4} \text{g/cm}^2$
Total mass of dust	$1.63 \times 10^{6} \text{ ton}$ per $1.36 \times 10^{6} \text{ km}^{2}$	$3.5-5.0 \times 10^6$ ton per year		
Distance from source to observation site	2500-3500 km	1400 km	2200 km	2500 km

第2表

 $\frac{dn}{dr} = Ar^{-3.5} (0.3 \,\mu\text{m} \le r < 10 \,\mu\text{m})$

=constant $(0.1 \,\mu\text{m} \leq r < 0.3 \,\mu\text{m})$

但し、nは黄砂粒子の個数空間密度、rは粒子の半径で ある.なおこのような関数のペキ数 -3.5 は、イタリア に降下した Sahara 砂漠の砂塵についても得られている のは興味深い (Prodi and Fea, 1979).

このような粒径分布を仮定した上で、レーザレーダ観 測,気象衛星「ひまわり」の可視画像の結果をまとめる と第2表のようになる.第2表の結果を出すにあたって は,前述の粒径分布関数の他に,屈折率1.50,粒子密度 2.6g/cm³を仮定した.

黄砂粒子の単位気柱あたりの密度について見ると,下 層の粒子層の値は石坂等(1981)の結果に近いものであ る.この時の黄砂の拡がりは,1.36×10⁶ km² 程度と考 えられ,この領域内に粒子がほぼ一様に分布していると すると全重量として 1.63×10⁶ t という値が得られる.

3. 結 語

38

1979年4月,中国大陸で発生した砂塵嵐によって大気 中へまきあげられた土壌粒子は,その後日本上空を広範 囲に覆い,各地で顕著黄砂現象が見られた.この時行わ れた,レーザレーダ観測,さらには気象衛星「ひまわ り」の可視画像,地上付近でサンプリングされた粒子の 粒径分布関数やX線回折像の解析(石坂他,1981)をも とにして,黄砂粒子の空間的ひろがり,輸送過程,大気 中へ放出された粒子量について議論した. レーザレーダ による垂直方向の粒子の分布観測と同時に,気象衛星に よる水平方向の拡がりを知ることは,これらの議論を行 う上できわめて有効であった.しかし今後さらに精密な 議論を行うには,それらの観測手法の限界をおさえてお く必要があろう.筆者等が今回特に感じたもののひとつ に,気象衛星画像の処理があげられる.粒子の空間濃度 分布,太陽一ダスト層一気象衛星の位置関係,地表面の 状態,粒子の粒径分布関数等が,衛星画像の明るさとど のような関係にあるか,系統的な調査が必要と思われ る.

近年, Shaw (1980) が,日本通過後の黄砂を Hawaii の Mauna Loa で観測したことを報告しており,輸送 範囲のひろさをうかがわせる. Duce et al. (1980) は, 太平洋の海底推積物の分析結果から,黄砂粒子の大気か ら海中への輸送の重要性を指摘しており,同様に輸送規 模の大きさを想像させる.

謝 辞

この研究をはじめるにあたって, 礒野謙治 名古屋大 学名誉教授,小平信彦 気象衛星センター所長(当時) に, いろいろな面で力添えをいただいた.気象衛星「ひまわ り」の画像を検討する際に,気象衛星センターの石坂重 次氏,山下喜弘氏(現在,気象研究所)にさまざまの便宜 をいただいた. 解析結果については,武田喬男 教授を はじめ水圏科学研究所の多くの人に討論の相手をしてい

▶天気/ 29. 3.

黄砂粒子の輸送とその空間的ひろがり―1979年4月にみられた黄砂現象のレーザレーダ観測―

ただいた. 深く感謝の意を表したい. なおこの研究は, 文部省科学研究補助費の援助を得て行われた.

文 献

- 荒生公雄・牧野保美・永木喜寛,1979: 黄砂に関す る若干の統計的研究,長崎大学教育学部自然科学 研究報告第30号,67-74.
- Carlson, T.N. and J.M. Prospero, 1972: The large scale movement of Sahara air outbreaks over the northern equatorial Atlantic, J. Appl. Met., 11, 283-297.
- ------, and R.S. Carverly, 1977: Radiative characteristics of Sahara dust at solar wavelengths, J. Geophys. Res., 82, 3141-3152.
- Duce, R.A., C.K., Unni, B.J. Ray, J.M. Prospero, and J.T. Merrill, 1980: Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific: Temporal variability, Science, 209, 1522-1524.
- Gringel, W. and R. Muhleisen, 1977: Sahara dust concentration in the troposphere over the north Atlantic derived from measurements of air conductivity, Beitr. Phys. Atmosph., 51, 121-128.
- Ing, G.K.T., 1972: A dust storm over central China, April 1969, Weather, 27, 136-145.

Ishizaka, Y., 1973: On materials of solid par-

ticles contained in snow and rain water: Part 2, J. Met. Soc. Japan, 51, 325-336.

- 石坂重次, 1979: 1979 年 4 月中旬の 黄 砂, 天気, 26, 725-729.
- 石坂 隆・小野 晃・角脇 怜, 1981: 1979年4月 中旬日本上空に飛来した黄砂中の主要鉱物の粒度 分布, 天気, 28, 651-665.
- Isono, K., M. Komabayashi, and A. Ono, 1959. The nature and the origin of ice nuclei in the atmosphere, J. Met. Soc. Japan, 37, 211-233.
- Jaemicke, R. and L. Shutz, 1978: A comprehensive study of physical and chemical properties of surface aerosols in the Cape Verde Island region, J. Geophys. Res., 83, 3585-3599.
- 村山信彦, 1980: 気象衛星から見た洋上の風じん, 海と空, 55, 149-168.
- Prodi, F. and G. Fea, 1979: A case of transport and deposition of Sahara dust over the Italian Peninsula and southern Europe, J. Geophys. Res., 84, 6951-6960.
- Shaw, G.E., 1980: Transport of Asian desert aerosol to the Hawaiian Islands, J. Appl. Met., 19, 1254-1259.
- Russell, P.B., W. Viezee, R.D., Hake, Jr. and R.T.H. Collis, 1976: Lidar observations of the stratospheric aerosol: California October 1972-March 1974, Quart. J. Roy. Met. Soc., 102, 619-639.

1982年3月