3. オホーツク海の北海道の気象への影響

大川 隆*

1. はじめに

オホーツク海は,北半球での海氷出現の南限であり, 一方,北海道といえども盛夏期には亜熱帯高気圧に覆われる. このため北海道の気象は四季を通じて変化に富み,また地域特性も著しいものがある.

今回,標記の命題のもとに,三つの事例,すなわち, 海氷と小低気圧による大雪,寒冷海水面によるオホーッ ク海高気圧の発達,流氷面積と三陸沖海水温,夏季気温 の関係について話題を提供する.

2. 海氷と小低気圧による大雪

2.1. 石狩湾小低気圧とサハリンフロント

北海道内の降雪の深さの年合計値をみると,オホーツ ク海側は一般に 200~250 cm と少ないが,北見枝幸(第 2図(下)の黒丸の地点)のみは 400 cm 以上と 多く, それ以北も 300 cm 前後とやや 多くなっている. このこ

第1図 季節風末期の石狩湾小低気圧の気圧配置.

第2図 網走の流氷期間と道内各地の1~3月合計 降水量の相関係数分布(上),1~3月合計 降水量の北見枝幸と道内各地との相関係数 分布(下).

とは長い間筆者にとってなぞであった.

第1図はいわゆる石狩湾小低気圧時の典型的地上気圧 配置で,同時にその時の海氷域を斜線で示してある.こ の図で特徴的なことは三つの気流系,すなわち,沿海州 からの北西気流A,樺太東沖の流氷野の放射冷却で滋養 された下層高圧部による北東気流B,同じく夜間の放射 冷却による北海道の内陸高気圧による南西気流Cがそれ ぞれ存在することである.気流Aと気流Bの合流域に発

^{*} Takashi Ohkawa, 札幌管区気象台.

生する収束雲が札幌・小樽地区に局地的大雪をもたらす ことは、これまでに幾多述べられている(例えば村松、 1976).気流 Bと気流 Cの間には低気圧性のシャーライ ンが形成され、そのラインと海岸が交わる地点が北見枝 幸付近となる.ここでこのシャーラインを"サハリンフ ロント"と称することにする.また樺太南沖の亜庭湾か ら北見枝幸以北のオホーツク海沖合一帯は晩冬に一時的 に流氷に覆われることがあるが、殆どは開水面となっ て、降雪のための水蒸気を気柱に補給しているわけであ る.このサハリンフロントと開水面が先述の北見枝幸以 北の多雪をもたらしている原因である.また、この小低 気圧型気圧配置が崩れる時、サハリンフロントは南東進 を始め、北海道オホーツク海沿岸一帯に一過性の暴風雪 をもたらすことがある.

2.2. 津軽海峡小低気圧

流氷野の勢力は北見枝幸の降雪の量を左右し、ひいて は札幌・小樽地区の降雪にも影響を及ぼすことを想定し て、北海道各地の1~3月の3カ月合計降水量(Pc)と 各種流氷指数との間の相関係数を求めたところ、第2図 (上)に示すように、網走の流氷期間 I(ABS) との間 の相関が最も有意であった.これによると、北見枝幸は +0.503と有意な値であった.しかし、紋別が+0.567 と良いことは、この地域が流氷野からの北東風系に対し 地形性降水効果が極めて卓越していることによるものと 考えられる.札幌・小樽が+0.35前後と期待したより小 さいのは、この地域の降雪が北西季節風や北海道南岸通 過の低気圧によってもたらされることによるためであろ う.しかし、函館から室蘭にかけての噴火湾一帯に組織 的な+0.4~+0.5の有意な相関があることは筆者にと って予想外であった.

この傾向をより顕在化させてみるため,北見枝幸の1 ~3月降水量合計値と道内各地のそれらとの間の相関係 数を求め,第2図(下)に示した。その結果,やはり函 館から室蘭にかけての噴火湾一帯に+0.6以上の明瞭な 高相関域が得られた。この高相関は資料年数が40年とい うことからみて,極めて安定したものと考えてよい。

噴火湾大雪の 典型的事例 としては, 第3 図に 示した 1963年2月11~13日の場合が取り上げられる. 流氷野に 滋養された樺太東沖の高圧部が北海道に張り出して, 津 軽海峡西方の小低気圧前面の湿潤気流を津軽海峡に圧し 止めたため, 噴火湾沿岸部が局地的大雪となったことが よく理解される. 同図右下図にはこの場合の2日間合計 の降雪の深さを示してある. 渡島管内の鹿部では 185 cm

第3図 津軽海峡小低気圧の気圧配置と降雪の深さ.

第4図 下降高気圧流とシールド層.

となっているが、12日の降雪の深さ(12日9時~13日9 時の積雪深前日差)は160 cm となっており、北海道の 最大記録(全国では第3位)を更新した.このようにオ ホーツク海の海氷の動向がやや隔たった北海道南西部の 大雪に直接的に関与していることが分かった.

3. 寒冷海水面によるオホーツク海高気圧の発達

3.1. シールド層

梅雨期のオホーツク海高気圧の発生・発達の主因は対 流圏上層の収束にあるが,発達強化のための二次的効果 としてシールド層による摩擦の減少効果が寄与する.流 氷融解後のオホーツク海の寒冷海水面に接している空気 は,冷却による密度増大と海面摩擦によって海水面上に 滞留する.その結果,第4図に示すように,その上のエ

1983年8月

クマン層と流れを異にする空気層を形成する。筆者はこれを"シールド層"と称している(大川, 1973).

シールド層が形成されると,沈降しながら吹き出す高 気圧流はこの層の上面を流れるため,海水面上を流れる 場合より表面摩擦を著しく減ずる.このことは流出風の 外向きの非地衡風成分の減少,すなわち,高気圧圏から の空気流出を減じ,高気圧内の気圧上昇を来たす.この 効果を,Taylor (1915)の手法に従って行った力学的見 積もりと,気象庁観測船 啓風丸による 観測資料を用い て検証した結果をここに話題として報告する.

3.2. 力学的取扱い

いま,運動を水平,定常,一様と仮定し,気圧場が (1)式で与えられるものとすると(Gは定数とする), 左手系の粘性流体の運動方程式の解析解は(2)式とな る.

$$p = \operatorname{const} - g\rho z + Gy \qquad (1)$$

$$u = A_2 e^{-BZ} \cos BZ - A_4 e^{-BZ} \sin BZ + U_g$$

$$v = A_2 e^{-BZ} \sin BZ + A_4 e^{-BZ} \cos BZ \qquad (2)$$

$$B = \sqrt{\frac{\omega \sin \varphi}{K}}$$

$$K = \frac{\mu}{\rho}; \; j \; j \; j \; j \; j \; k t t f K \\
U_g = \frac{G}{2\mu B^2}; \; 地 衡 風速$$

$$A_2 = \frac{-\tan \alpha \; (1 + \tan \alpha)}{1 + \tan^2 \alpha} U_g$$

$$A_4 = \frac{-\tan \alpha \; (1 - \tan \alpha)}{1 + \tan^2 \alpha} U_g$$

$$(3)$$

であり、φは緯度、αは地表風の等圧線となす角である.

いま,円形高気圧を考えると,その周辺からの流出空 気量Qは(4)式で計算される.高気圧半径rを500 km, 緯度を 50°N,空気密度 $\bar{\rho}$ を 1.25×10⁻³ C.G.S. とする と,Qによる気圧下降分 ΔP_n は(5)式で求められる. 但し, U_g は m/s, K は 10² C.G.S. 単位で測った値を 使用する.

$$Q=2\pi r\bar{\rho}\int_0^\infty (-v)dz \qquad (4)$$

$$\Delta P_n = \frac{Q}{\pi r^2} = 0.5665 \frac{\sqrt{K} \tan \alpha}{1 + \tan^2 \alpha} U_g \, \text{mb/day} \quad (5)$$

シールド層による気圧上昇は、シールド層のある場合 の ΔP_n と無い場合のそれの差として求められる.

3. 3. 気圧上昇の見積もり

Taylor (1915) は、1913年夏のスコッチャ号探検時の 北大西洋の 寒冷海水面上 での凧による 観測 がら「Kは

0.77×10³~6.9×10³ C.G.S., α は10~20°」と結論して いる.この値を参考にして見積もったのが第1表左欄に 示した数値で,約6mb/dayとかなり大きな値を得た. しかし,この値は日々の天気図経験からみて大きすぎる ので,K, α を変えて控え目に見積もったのが右欄に示 した値で,4mb/dayとなっている.実際の天気図例に よると,高気圧の急速な発達は発生初期の12時間位で, その後発達はゆるやかになる.これは,その頃になると エクマン層より更に上の層で二次的発散が起こるためで ある.事実,第5図の資料を得たオホーツク海中央部で のU-D ゾンデ観測では,高さ700m 付近に下降発散 による乾燥した層が観測されている.したがって,シー ルド層効果は12時間量で云々した方が良く,第1表から この効果は2~3mb/12 hr と見積もられる.

3. 4. 実験式による検証

Mahrt・Schwerdtfeger (1970) は南極大陸氷床上の逆 転層の観測から、気温の垂直分布とエクマン層のうず粘 性係数を結びつける実験式(6)を得た。

$$T(z) = T_h - \Delta T \exp\left(-\frac{z}{\sqrt{\frac{K}{f}}}\right) \tag{6}$$

ここで、 T_h は逆転層頂の気温、 ΔT は T_h と地上 1.5 m の気温差、f はコリオリ 因子、Kはうず 粘性係数 であ

*天気// 30.8.

る.ところで,(6)式はシールド 層表面より上の層で 成り立つものであるため,シールド層の場合に適用する ためには(6)式を(7)式に変形する.

$$-\frac{z-z_{*}}{\sqrt{\frac{K}{f}}} = \ln\left\{1 - \frac{T(z-z_{*})}{T_{h}}\right\}$$
(7)

こゝで、 z_* はシールド層の高さであり、またこの場合 $\Delta T \ge T_h$ が等しいことを考慮してある.

1972年5月28日14時、オホーツク海高気圧下での U-D ゾンデによるシールド層の観測が、オホーツク海 中央部の50°N150°E において、啓風丸によって行われ た.第5図の中で、白丸の各点がその時の気温の観測値 で、ほぼ高さ50m毎に 観測されている.太実線は T_h を6.0°Cとして、細鎖線は T_h を5.7°Cとして、それ ぞれ B、C点を通るよう(7)式を適用し、K、Z_{*}の値 を見積もったもので、Kの値として3.05×10³ C.G.S., 1.88×10³ C.G.S. を得ている.太破線はシールド層の 無い場合として、太実線のC点を固定してA点(シールド 層の高さ)を海水面まで降ろして、Kの値を見積もった ものである.この程度に逆転層 がゆるくなるとKは10⁴ C.G.S. になることが分かる.しかし実際にシールド層が 無くなるとC点も下降するので、Kの値はやはり Taylor が求めたように6.9×10³ C.G.S. 以下であろう.

以上の検討から、シールド層がある場合のエクマン層 内のKの値は $1.0 \times 10^3 \sim 3.0 \times 10^3$ C.G.S. であることが 分かったわけで、第1表右欄の見積もり、すなわち、「オ ホーツク海高気圧の発生初期の気圧上昇には、シールド 層の効果が $2 \sim 3$ mb/12 hr 寄与している」という結論 は妥当なものであると推論される。

4. 流氷面積と三陸沖海水温, 夏季気温の関係

オホーツク海の流氷と海況および北日本夏季気温の関 係についての研究は、明治年間以来数多くなされて来た. それらの研究の殆どは「流氷は春の融氷で親潮の勢力を 強め、それによる三陸沖の低温水が北日本の凶冷に関係 する」との考え方のもとに進められて来ており、これま で流氷勢力の有効な指標を得ることが出来なかったた め、肯定的または否定的いずれについても明確な結論は 得られていない.赤川(1980)は1966年以後の気象衛星 資料を用いて、オホーツク海の流氷面積が大きい年には 北日本暑夏年が対応していることを指摘し、西山(1982) も流氷面積と三陸沖水温の間に+0.51の相関を得てい る. 筆者もここで相関解析手法による同様な動気候学的 考察を試み、新たな知見を得たので報告する.

第1表 Estimation Results of Shield Layer Effect

	larger e	stimation*	less estimation		
existence of shield layer	no exist		no	exist	
K (C.G.S.)	6.9×10 ³	0.9×10 ³	5.5×10 ³	3.0×10 ³	
α (degree)	15°	5°	17.5°	7.5°	
u _g (m/sec)	6	6	5	5	
∆Pn (mb/day)	ΔŖ 7.20	ΔP, 0.89	∆₽¦ 6.03	∆P₂ 2.01	
ΔΡ (Δ <u>Ρ</u> -ΔΡ)	6.31mb/da ≒	ay 3mb/12hr	4.02 mb/day ≒2mb/12 hr		

***** by use of $\int K: 0.77 \times 10^3 - 6.9 \times 10^3 C.G.S.$

GI.Taylor's results a: about 10°-20°

第6図 流氷面積最大値と8月気温との間の相関係 数分布と海面水温指数設定海域(右下).

4.1. 流氷面積と海面水温,気温の対応

各年冬期間のオホーツク海の流氷面積最大値(ここで は PIA と略記する)と夏季気温の対応は、予備的に概 観したところ、8月気温が最も良く、かつ1978年までは 良好で、その後乱れていることが分かった。そこで第6 図に1978年までの資料による PIA と北日本気象官暑の 8月平均気温の相関係数を図示した。これによると、北 海道南西部から三陸沿岸は+0.7以上の高相関となって いる。そこで、今後北日本気温の指標として、図中の黒

1983年8月

丸の11気象官署の気温の平均値をとり、*T*₁₁ と表示する こととした.また流氷融解水の太平洋側への流出の大部 分が北ウルップ水道を経由することを考慮して、海面水 温の指数としては第6図右下に示した U, N, S の各緯 度経度1度枡目6個の海域の平均表面水温をとり、これ らを U-SST(ウルップ沖), N-SST(根室沖), S-SST(三 陸沖)と表示することとする.

第7図は1966年から1982年までの年々の PIA と8月 の T_{11} と三陸沖水温 (S-SST)の対応をみたものであ る. PIA と T_{11} は1970~1976年の7年間は極めて良く 対応しており,相関係数も+0.987となっている.しかし, この関係も1979年以後は急激に悪くなっている. PIA と S-SST の対応は T_{11} のように極端に良い期間は無 いが,平均的に良く対応しており,特に1979年以後は S-SST の方が良い.

北日本の暑夏年,冷夏年は殆ど亜熱帯高気圧の半球 的な動静に支配されることからみて,1970~1976年の PIA と T₁₁の高相関は晩冬のオホーツク海の流氷勢力 がこのように8月気温を規制すると考えるのは無理であ る。これら双方の現象を支配している大気環流の影響が たまたまこのようになったとみるべきである。しかし, PIA と S-SST のゆるやかな対応は流氷勢力の海水温 への影響を示唆するものである。

PIA と各月の T_{11} , 各月各海域の SST の間の相関係 数を第 2 表に示した. T_{11} については, 1978年までの資料では 5 ~ 8 月は高相関で,特に 8 月が+0.7以上と良い が, 1982年まで4年間追加するだけで相関は急激に落ちている. 同様なことが PIA と S-SST の間にもみられる. すなわち, 相関係数は1978年までの資料では 7 月; +0.662, 8 月; +0.677と高いが, 1982年まで入れると 第 2 表にみるように +0.3 以下に落ちてしまう. 1966年 から1982年までの17年間の資料(但し 9 月, 10月は1981

第2表 Correlation Coef. between PIA

and Tu or SST					n=17(1966~82)			
	APR	MAY	JUN	JUL	AUG	SEP	OCT	
T11(-78)	.070	394	490	.496	742	.189	.258	
T11(- 82)	215	.163	500	.143	364	.106	406	
U-SST	-375	-415	204	050	.139	,292	.166	
N-SST	-312	038	017	.203	.206	560	464	
S-SST	.121	.160	.149	.213	299	402	406	

第3表 Correlation Coef. between S-SST and Ti

			S-SST							
			APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
	n(yrs)		17	20	17	16	20	17	15	
		APR	279	.217	003	.035	.373	.462	143	
		MAY	.033	.568	656	.390	.464	.721	.177	
	Tu	JUN	.089	.192	562	.391	.405	.530	.405	A
ŀ		JUL	155	.186	.005	570	.562	.214	201	Ĩ
ĺ		AUG	010	.218	.068	.570	751	588	.182	Ĩ
		SEP	.065	.088	.307	.285	.714	.806	574	-
		ОСТ	.024	021	.396	172	.065	.476	852	

I SEA→AIR

年までの16年間)では相関係数は安定していないと推論 される.

第2表から PIA と各 SST の関係を傾向的にみると, ウルップ,根室海域では4月,5月頃に負相関となり, 盛夏期は三陸沖海域が+0.3 弱とやや良い他は有意な相 関はみられず,9月,10月に根室,三陸沖両海域で高相 関となっている。すなわち,流氷が多い年は,4月,5 月にウルップ,根室海域は低水温となり,夏季は昇温し て高水温に移行するが,その影響が安定して最大となる のは秋季であるといえよう。

ここで、夏季に温暖化する三陸沖水塊がはたして親潮 系水塊かどうか問題となるところである。函館海洋気象 台観測船 高風丸による1978年8月の 観測値 を T-S ダ イヤグラムに記入し、検討した結果、一部混合水塊の存 在が推定される他は殆ど親潮水系と判定された。

4.2. 三陸沖海水温と北日本気温

第3表は三陸沖水温と T_{11} の間の4~9月の各月の相 関係数を表示したもので、資料年数は1982年(9月,10 月は1981年)までの15~20年である。表の左上から右下 にかけての斜線域の欄は同時相関で、春から秋に向かう に従って良くなっており、特に9月,10月は第2表同様 に高相関となっている。この原因については筆者は次の ように考える。

大気の半球的環流の季節推移よりみると、秋には10月

▶天気// 30.8.

半ばすぎまで亜熱帯ジェット流はヒマラヤ山系の北側を 流れており、一方北極から高緯度は冷却により周極寒冷 うずが発達する. このため帯状流が卓越し、日本付近の 気圧配置は年による大きな差異はみられない、反対に春 から初夏にかけては日射による高緯度大気の暖化に伴っ て子午線流が卓越し、地上気圧配置の年による差異も著 しく大きくなる. すなわち, 春から初夏の頃には海水温 よりも大気環流場の年による差が気温を大きく規制して [・]おり,秋には大気環流の年による差が小さくなり,それ だけ水温と気温の関係が密になるわけである.

再び第3表にもどろう.対角線の斜線欄より下の欄は 水温が翌月以後の 気温に 影響を 及ぼすものを 示してお り、上の欄は逆に気温が水温に影響することを表してい る. このようにみると、7月、8月は水温が翌月の気温 に大きく影響を及ぼしていることが分かる。また程度は やや劣るが、8月、9月の気温は翌月の水温に作用して いることが定性的に云える。ここで特異なのは、5月気 温が6月水温, 9月水温に+0.6~+0.7の高相関を有し ていることである。特に9月の正相関は表中の上下,左 右の欄の数値からみて、規模も大きく安定したものと推 定出来るが,その原因については不明である.

以上述べて来たことから考察するに、「流氷が春季か ら秋季の海水温に作用し、次に海水温が気温に影響を及 ぼしている」ことは確かであり、またそのように考える のは論理的に無理がない。しかし、第2表にみるように PIA と秋の海水温の相関係数が+0.5前後ということか ら考えて、PIA と夏季の T11 の相関は、今後資料年数 が増加して安定しても、+0.4程度のものであろう.「オ ホーツク海の流氷面積最大値が夏から秋の海水温,北日 本気温に正相関の関係を有する」ということは定性的な がら明言出来る。

文 献

- 赤川正臣,1980:オホーツク海の流氷と北海道・東 北地方沖合海況との関連,海と空,55,169-181.
- Mahrt, L.J. and W. Schwerdtfeger, 1970: Ekman spirals for exponential thermal wind, Boundary-Layer Met., 1, 137-145.
- 村松照男, 1976: 石狩湾小低気圧による大雪, 札幌 気象100年記念論文集, 31-49, 札幌管区気象台。
- 西山勝暢, 1982:北日本海区のテレコネクションに ついて、日本気象学会北海道支部だより、27、 52 - 53.
- 大川 隆, 1973: オホーツク海高気圧の成長機構, 気象庁研究時報, 25, 65-77.
- Taylor, G.I., 1915: Eddy motion in the atmosphere, Phil. Trans. Roy. Soc. London, ser. A 215, 1 26.

4. 大気と海氷の相互作用"大気大循環への影響"

片山 昭*

1. はじめに

極洋の海氷は大気大循環または気候形成の上で重要な 役割を荷なっている.海氷は陸氷と異なり著しい季節変 化を示すと共に、年々の消長も激しい. 海氷域の変動が 大規模な大気の循環にどのような影響を及ぼしているの であろうか. 古くから多くの研究がなされているが, 局 所的な関係は別として大規模大気場との関係について確 定的な結論を得たものはないと考えてよかろう。ここで は、この間の事情について報告し、その理由についても 考えて見たい。

2. 海氷の気候への影響要因

海氷域の変動は、以下の過程を通じて大規模大気場や 気候に影響を与え得る:

i)海面のエネルギー収支. 海面に氷が張る事によ り、海水と大気との直接の接触を断ち、顕熱および潜熱 の交換を著しく抑制すると共に、表面粗度の減少により 運動量の交換も少なくなる。またアルベードは海水面の 8%前後から海氷面の40%以上と増大し海洋表層による 日射の吸収も著しく減少する、すなわち、海氷の有無は 海面周辺の熱収支に顕著な影響を及ぼすことは明らかで ある、そのため、海氷原の縁辺部では大気の加熱冷却に 強いコントラストを生じ、傾圧帯が形成され低気圧活動

1983年8月

^{*} Akira Katayama, 神戸海洋気象台(前 気象研究所)