

ź

1983年11月 Vol. 30, No.11

関東地方の局地的悪天時の場の特徴の数値シミュレーション*

山岸米二郎**

要旨

関東地方にいわゆる北東気流の現象が観測された事例を選び,数値シミュレーションの結果を解析した. モデルは北東気流時の特徴のシミュレーションに基本的に成功している. モデルの解析結果は,北東気流の 現象には中部山塊の影響が重要であることを示唆している.

1. はしがき

関東地方に局地的悪天をもたらす現象,いわゆる北東 気流については,古くから多くの調査がある(例えば高 橋,1940;畠山,1942). 北東気流に伴う降雨は主とし て関東南部の沿岸地方に限られ,降雨強度も弱く災害を もたらすことはない.また曇天だけで経過することもあ る.それにもかかわらず多くの人の興味を引きつけたの は,関東地方に特有な局地的現象で,西から追跡できる 現象でないことにあると思われる.筆者の興味も上に述 べた点にある.

瀬下(1963)は北東気流の総合報告を行い,北高型を A,B,Cの3つの型に分類している.このうちC型は移 動性高気圧または中緯度高圧帯が北偏(高気圧中心が 北緯 38°以北)する場合で,悪天の規模が関東地方南 部に限られるとしている.本論文で取り上げる例も瀬下 (1963)のC型に属する例である.

斉藤(1971)はC型に属するケースの解析を行い,関

* Numerical simulation of features associated with local cloudy weather around Kanto area.

** Yonejiro Yamagishi, 気象庁予報部電子計算室.
 ——1983年5月23日受領——
 ——1983年9月12日受理——

東地方の悪天を高気圧の南東領域で一般的に発現する悪 天に関連づけて論じている。

北東気流の現象は、日本付近を通過した寒冷前線が 30°N付近まで南下する過程で発生する場合が多い.こ の時関東地方に悪天をもたらす下層雲域は、前線に伴う 雲域とは別に関東地方の南東或いは南から帯状に関東地 方に延びている.この状況は衛星写真の解析で明瞭に示 されている(櫃間,1979;櫃間・成川,1980;真島, 1980;長谷川,1982).この帯状雲域は時により日本南 岸を西進し,紀伊半島方面にまで達することが上記諸論 文で指摘されている.帯状雲域の成因については,黒潮 域での気団変質による成層不安定化が論じられ,また中 部山岳の影響も示唆されている(櫃間・成川,1980).

本論文では数値モデルが北東気流の特徴をどのように シミュレートしているかを検討し, 雲域の生成について も考察する. なお 現実の予報の立場では 雨が 降るか否 か,雨が沿岸地方のみに限られるのか内陸にまで及ぶの かという点が重要であるが, これら細かい点は本論文の 対象ではない.

本論文では 1982 年 3 月 6 日 (CASE 1), 11 月 23 日 (CASE 2), 12月14日 (CASE 3)の例を検討する.

1983年11月

3

第1図 地上バターンと 500 mbの風(太矢羽根). 影をつけた部分は注目する雲域. 風速の単位はノット.
 (a) CASE 1, (b) CASE 2, (c) CASE 3.

 第2図 900 mb (細矢羽根), 850 mb (太矢羽根) 面の実測風と 850 mb 面の気温(実線, °C) と相当 温位(点線, °K). 風速の単位はノット. 黒く塗った部分は高度 1,000 m 以上の地形を示す.
 (a) CASE 1, (b) CASE 2, (c) CASE 3.

2. 北東気流時の特徴

いわゆる北東気流と呼ばれる時には高気圧の中心が関 東地方の北側にあるので,関東地方では北東の地表風が 卓越する.しかしこの北東風はごく下層にのみ限られ, すでに指摘されているごとく(高橋,1940)関東地方の 下層,900~850 mb では南寄りの暖湿な気流が観測され ることが多い.この状況は今回の例でもあらわれてい る.

第1図(a),(b),(c)に北東気流の特徴が観測され た時の地上天気図と着目する主なる雲域(点影域)を示 す.図で細矢羽根は地上風,太矢羽根は500mbの風を 示す.また24時間前の前線系の位置を点線で示す.前線 に伴う雲域とそれとは別に関東地方に延びる雲域がみら れる.中層の風は西~西南西である.地上では,三陸沖 から関東東方海上では北~北東の風であり,日本の南海 上の西寄りの風系との間に,関東地方の南東海上で風の 収束域がある.着目している下層雲域の主体は地上風の 収束域の北側に位置しているようにみられる.

第2図(a),(b),(c)は日本付近の下層風と気温お よび相当温位の分布を示す.この図では次の諸点に注目 したい.中部山塊の西側では北西の風で強い寒気移流 がある.山塊の北側では西寄りの風で寒気移流か弱い暖 気移流である.山塊の北西側の輪島では日本海側の他の 地点に比して南寄りの成分が強い.一方山塊の南東の館 野では南東~南西の風で強い暖気移流があり,ここだけ 他と異なる様子を示す.上に述べた風の場は,中部山塊 を迂回して東北地方に向かう流れと,山塊の西側を南下 しつつ山塊の風下で北上成分を持つ流れの存在を示唆す る.相当温位の場も上述の風系に対応し,山塊の西側で の相対的に乾いた空気の南下,関東地方の南東海上から 関東地方へのびる暖湿な空気が存在している.

他と異なる 館野の 特異な風系は 900~800 mb の下層 のみに存在する.第3図(a),(b),(c)は館野(CASE 1 (a), CASE 2 (c))と浜松 (CASE 1 (b))の気温と

*天気/ 30. 11.

4

 第3図 CASE 1 の場合の館野(47646, (a)), 浜松(47681, (b)) と CASE 2 の 館野(c)の時間断面図. 実線は気温(°C), 太点線は安定層の境界を示す.
 風速の単位はノット.

風の時間断面図である. 浜松 (47681) では 寒冷前線通 過後,下層では西〜北西の風が持続している. 一方館野 (47646) では,寒冷前線通過直後の北西の下層風は,前 線が遠ざかるにつれ南東〜南西の風に変わっている.

3. モデルの概要

モデルの概要は以下の通りである。詳細については Electronic Computation Center (1983) を参照されたい. モデルの格子間隔は 63.5 km (60°N のステレオ投影) である。第4図に予想領域とモデルの地形を示す。図の 右下に日本中央部の詳しい地形を示し、左下に格子の大 きさを示す. 地形は平滑化され実際の高度よりもかなり 低い.第5図にモデルの鉛直構造を示す.モデルはσ系を 用いており、上端の気圧は 100 mb で鉛直方向に11層で ある. 鉛直方向には渦拡散係数 Km, Kh, Ke と鉛直速度 . σをのぞくすべての変数を同じσ面に定義する. 記号 Km, Kh, Ke はおのおの運動量, 顕熱, 水蒸気に対する 鉛直渦拡散係数を示す. H, W, τ は顕熱, 水蒸気, 運 動量の地表面でのフラックスを示す. 記号 S, L, Hg は 地表面での太陽日射,長波放射,地中への(からの)熱 伝導を示す. また $\pi = P_s - P_t$, P_s : 地表面気圧, P_t : モデル大気の上端の気圧である.図で sig, sigm と記さ れている各レベルの σ の値を 第1表に示す. 表からわ かるように下層の分解能が細かい、これは境界層内の鉛 直渦拡散過程を精度よく計算する目的から設定されたも のである.水平方向にもすべての変数を同じ格子点に定 義している.

モデルに含まれる物理過程を簡単に説明する。地表面 1983年11月

第4図 モデルの予想領域と地形高度(単位,m) 及びグリッドの大きさ.右下に実際の地形 を示す.

での顕熱・水蒸気・運動量のフラックスは相似則を用いて計算する.フラックス・プロファイルの関係式は Businger 他 (1971)のものを用いる.接地層より上の鉛 直渦 拡散 は Mellor・Yamada (1974)のレベル2の closure model で計算する.大気中の放射過程は計算し ない.地表面に達する太陽日射は実験式 (Kondo, 1976) により計算する.太陽日射は格子点毎に地方時の関数で ある.日射計算に必要な 雲量は 相対湿度から計算する (Smagorinsky, 1960).地表面 での下向き 長波放射 は

	1	2	3	4	5	6	7	8	9	10	11
Sig	1	0.989	0.967	0.933	0.889	0.833	0.767	0.689	0.589	0.445	0.222
Sigm	0.995	0.978	0.95	0.911	0.861	0.800	0.728	0.639	0.517	0.333	0.111

第1表 第5図で sig, sigm と記したレベルの σ の値.

Brunt の式により求める. 放射計算は陸地面でのみ行 い,海面上では海面温度が時間とともに一定であると仮 定する. 時間積分の途中で過飽和になった場合は,飽和 値になるように水蒸気量と気温を調節する. この時生ず る凝結量を降水(大規模降水)とみなす. 対流効果のパ ラメタリゼーションには湿潤対流調節方式を用いる. 対 流調節はレベル4(~900 mb)から上にのみ適用する.

側面境界は、より広い領域で計算されるファイン・メ ッシュ・モデルと one way nesting 法でつなぐ. 境界 付近には一種の強い diffusion を作用させてノイズの反 射を抑える.時間積分方式は巽(1983)により提案され た方法を用いる.

初期値としては、254 km 格子の 客観解析値を 63.5 km に内挿したものを用いた。

4. シミュレーションの結果

第6図.(a),(b),(c) に3月5日12GMT (CASE 1), 11月22日12GMT (CASE 2), 12月13日 00 GMT (CASE 3) を初期値とする24時間予想地上図を示す. 風は最下レベル(地表面より~40mの高度)のもので ある.18~24時間の6時間に雨量が予測された区域を陰 影域で示す.積算雨量(点線)は4mm毎で示す.南海 上の前線系とは別に関東地方の南あるいは東海上での風 の収束域と,その付近での雨域が予想されている.第1 図と比較すれば,おおまかな特徴が予想されている.但 し CASE 3 では三陸方面の高気圧が弱く予想され,従って関東東海上での地上の北東風の予想もよくない.ま た風の収束域は中部山塊の西側を通る風と,北側を通る 風系または関東東海上の高気圧の南辺の風系との間に形 成されているようにみられる.

第7図(a),(b),(c)は t=24の 850 mb の相当 温位を示す. 陰影域は 850 mb 面で相対温度が80%以上 の区域である. 第2図と比較すると中部山塊の西側での 乾いた空気の南下,関東地方の南東〜東海上から関東地 方にのびる暖湿域の傾向が,より強調されてシミュレー トされていることがわかる. この 850 mb 面の暖湿域は 地上風の収束域の やや北東側に位置している(第6図 と比較せよ). この傾向は第1図での下層風の収束域と、 注目する雲域との関係と一致している.

次にこの付近の鉛直構造をしらべてみる。第8図は第 7図(b)の太実線に沿う相当温位の鉛直断面図であ る。太い縦線は下層風の収束域を示す。周囲に比して相 当温位の高い領域の上端はほぼ 800 mb で、その周囲で は 900 mb 付近に極小値があって強い対流不安定の状態 を示している。第7図(b)の点 A, B での温位と相当 温位(a), 比湿(b)の鉛直分布を第9図に示す。 点 Aは850mb 面での高相当温位域,点Bは低相当温位域 の代表として選んである。下層での気温はB点の方が高 い. しかしながら, 両地点での相当温位の差は 900 mb 付近で最大で、点Aは点Bより相当温位が高い. その差 は水蒸気量の差によることがわかる。ここに示した気象 要素の鉛直分布は他の例についても同様である。第10図 は CASE 2 の t=24 のレベル5 (~880 mb) の鉛直流 の分布図である。相当温位の分布に対応して、中部山塊 の西側と東北地方の太平洋側に下降流が、関東地方に上 昇流が予測されている、第7図(b)の点A,B での鉛

▶天気// 30. 11.

1983年11月

域. 凝結量は点線で4mm 毎に示す.

(a)

(b)

(c)

Ŵ

300 306W

н

290

300

288

28

зn

28

7

第8図 第7図(b)の太実線に沿う相当温位の鉛直断面図、図中の太い縦線は第6 図(b)での風の収束線の位置を示す。

第9図 第7図(b)の点A, Bでの温位と相当温
 位(a), 比湿(b)の鉛直分布

直流の鉛直分布 (*t*=24) を第11図に示す. A 点での上昇 流の極大は 900 mb 付近にあり, 700 mb より上では下 降流となっている. 一方 B 点では 下層は 弱い 下降流と なっている.

A, B 両地点での水蒸気量の差がモデルでどのよう にして維持されているかを, t=18~24 の6時間の850 mb 面の状態で検討する. この間水蒸気量の多いA点で は降水が予測されていて,これにより水蒸気量は減少す る傾向である.一方B点では降水はない. 海面からのフ ラックスと鉛直渦拡散による水蒸気量の増大はA,B 両 地点ともレベル4 (~930 mb)以下で生じており,850 mb 面には達していない. 結局A,B 両地点での水蒸気 量の差をもたらすのは水平および鉛直の移流効果による ことになる.A点での6時間の平均鉛直流は-6 mb/hr, この間の鉛直移流と水平移流による水蒸気量の増大はお

第10図 CASE 2 の t=24 のレベル5 (~880 mb)
 の鉛直流の分布. 点線は上昇域, 実線は下
 降流域, 単位は mb/hr で 4 mb 毎.

第11図 第7図(b)のA, B点での t=24 の
 鉛直流の鉛直分布 (CASE 2).

のおの1.7 gr/kg, 0.1 gr/kg である. 一方B点では平均 鉛直流は1 mb/hr で,鉛直移流による減少は0.0 gr/kg, 水平移流による水蒸気量の減少は -2.7 gr/kg である. 相当温位の高い区域(水蒸気量の大きい区域)は,上昇 流による水蒸気量の増加が大きい. 一方相当温位の低い 区域(水蒸気量の少ない区域)は,水平移流が水蒸気の 減少に大きく寄与している.

次に第2図と対比するために 900 mb と 850 mb 面の 24時間後の予想風を第12図に示す.気圧面高度が地形高 度以下,または風速が2ノット以下の場合は風をプロッ トしていない. CASE 2 を除き,関東地方南部の南寄り の風は,充分よくシミュレートされているとは云いがた い.しかし 900 mb 面では中部山塊の西を通る,西~北 西の風と山塊の北を通る風系はよく表現されている.

これまでの結果は中部山塊の存在が、北東気流時の場 の特徴の発現に大きく影響していることを示唆してい る. モデル実験で比較するため、特徴を最も良くシミュ レートしている CASE 2 について、地形高度を1m と

▶天気// 30. 11.

第12図 900 mb, 850 mb 面の風の 24 時間予想値. CASE 1 (a, b), CASE 2 (c, d), CASE 3 (e, f).

(a)

第13図 (a)CASE 2 で地形高度を1m とした場合の24時間地上予想図とモデル最下レベルの風 風速の単位はノット.

(b) CASE 2 で地形高度を1m とした場合の t=24 のレベル5 (~880 mb) の鉛直流の 分布.図の表現法は第10図に同じ.

した場合の結果を示す。第13図(a),(b) は海陸の分 布はあるが地形高度が1mの場合の,24時間予想地上 図と、レベル5(~880 mb)の鉛直流の図である。おの おの第6図(b)と第10図と対比するべきものである。 第6図(b)と第13図(a)を比較すると、関東地方の 等圧線パターンと地上風系に大きな差があり、地形高度 を1mとした場合は、関東地方南東海上の地上風の収束 線が予想されていない。第10図と第13図(b)で差が顕 著なのは関東地方南部に中心をもつ上昇流域である。こ の数値実験の結果は北東気流時の場の特徴に対し、中部

山塊が大きく影響していることを示唆している.

5. まとめと考察

関東地方でいわゆる北東気流と呼ばれる現象があった 時の3つの例を選び、数値シミュレーションの結果を解 析した。モデルは、関東地方の南〜南東海上での地表風 の収束、関東地方の東〜南東海上から関東地方にのびる 湿潤域という特徴を良くシミュレートしている。この湿 潤域の高さはおよそ 800 mb まで達している. これは北 東気流時に観測される下層雲を考えるとほぼ妥当とみな

537

1983年11月

538 せる

下層風の収束は三陸沖または関東地方の東海上の高圧 部の南側の東〜北東風と中部山塊の西側を通る北西〜西 風との間に形成されているようである。

第8 図で 湿潤域の 両側にみられる 強い 対流不安定域 は,海面からの顕熱・水蒸気の補給(~930 mb までし か達していない)とそれより上の層での下降流と水平移 流という力学効果によって 維持されている. 800 mb 付 近まで達している湿潤域は対流不安定によって生ずる対 流というよりも上に述べた下層風の収束による上昇流に よって維持されている.

モデルの分解能が粗く日本付近の地形がよくあらわさ れているとは云い難い(第4図). 従って 細部にわたっ て観測とシミュレーションの一致を論ずるのは無理であ る.しかしこの解析の結果は,北東気流を高気圧の南東 領域で一般的に発現する悪天(斉藤,1971)としてみる だけでなく,中部山塊が気流に及ぼす影響という点から も検討すべきことを示唆している.

中部山塊の影響を論ずる時考えねばならないことの1 つに山越え気流の問題がある.西〜北西の風が卓越する 時山越え気流が生ずれば,関東地方は下降流の場となる はずである.事実このモデルでもそのような山越え気流 と思われる現象が(特に冬期に)しばしばあらわれる. 従って北東気流時に中部山塊を迂回する気流の影響を強 調するならば,このような時何故山越え気流が生じにく く,風下の関東地方で上昇流の傾向となるのかを論ずる 必要がある.本論文はその点で片手落ちである.ただ北 東気流の現象が観測される時には山塊の風上で下層風が 西〜北西でも中層以上では西南西の風が卓越している (第1図,第2図).このような風向の差が山越え気流を おこしにくくしているのではないかと推測している.

6. 謝辞

北東気流の現象を考えている段階で,気象庁予報課の 木元昌秀,長谷川隆司,黒崎明夫の三氏には種々議論し ていただいた.ここに感謝の意を表します.

文 献

- Businger, J.A., J.C. Wyngaard, Y. Izumi and E.F. Bradly, 1971: Flux-profile relationships in the atmospheric boundary layer, J. Atmos. Sci., 28, 181-189.
- Electronic Computation Center, JMA, 1983 : Outline of operational numerical weather prediction at Japan Meteorological Agency, Appendix to periodic report on numerical weather prediction, 48-62.
- 長谷川隆司, 1982: 南岸沖小低気圧(本州南岸沿い
- を西進後東進する中間規模じょう乱,研究時報, 34,1-15.
- 畠山久尚, 1942:北東風による関東地方南部の局地 的降雨について, 気象集誌, 20, 349-352.
- 櫃間道夫, 1979:本州南岸沖を西進して発達する中 規模雲域(その2), 天気, 26, 605-610.
- , 成川二郎, 1980:本州南岸沖を西進して
 発達する中規模の雲システム(その3), 天気,
 27, 809-816.
- Kondo, J., 1976: Heat balance of the East China Sea during the air mass transformation experiment, J. Met. Soc. Japan, 54, 382-398.
- 真島恒裕, 1980:北東気流による関東地方の局地的 悪天について, 天気, 27, 553-564.
- Mellor, G.L. and T. Yamada, 1974 : A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos, Sci., 31, 1791-1806.
- 斎藤直輔, 1971:関東地方の北東気流についての一 考察, 研究時報, 23, 241-254.
- 瀬下慶長, 1963: 関東地方の北東気流, 気象研究/ ート, 14, 81-91.
- Smagorinsky, J., 1960 : On the dynamical prediction of large scale condensation by numerical methods, Geophysical monographs No. 5, American Geophysical Union, 71-78.
- 高橋浩一郎, 1940:北東風による関東地方の局部的 降雨に就て, 気象集誌, 18, 158-160.
- Tatsumi, Y., 1983 : An economical explicit time integration scheme for a primitive model, J. Met. Soc. Japan, 61, 269-288.