1071:412 (台風強度示数)

台風の中心気圧の変化に先行する台風強度示数の変化*

島田健司·用貝敏郎**

1. はじめに

台風の強度を推定するのに、気象衛星の赤外データを 利用した Dvorak (1982)の方法が、広く使われてい る.この方法では、台風が衰弱する場合、衰弱開始後12 時間は、衰弱以前の強度示数をそのまま維持し、その後 は、算出された強度示数を、0.5~1.0段階引き上げて、 最終的な強度示数としている.これは、衰弱期にあって は、赤外データの分布、すなわち、雲頂温度あるいは対 流活動の変化が、中心気圧や最大風速で示される台風の 強度の変化よりも、12時間程度先行するとの解析事実に 基づいている。

しかし、いっぽうでは、Rosenthal (1978) をはじめ 少なくない気象学者が、数値実験によって、台風の発達 期には、中心気圧の急速な下降に先立って、中心から 30~70 km 付近の上昇流が急速に強まることを示してい る.また、島田・内田 (1982) は、発達期にあっては、

第1図 台風8305号の赤外画像, 8月8日03(Z).

- * The change in T-number derived from the GMS digital IR-data precedes the change in central pressure of a typhoon.
- - ——1983年11月8日受理——

台風の中心気圧の変化に先行する台風強度示数の変化

131.105 131.605 102.105 132.005 133.105 134.105 133.606 17.508 -46 -54 -55 -61 -69 -70 -70 -70 -64 -65 -67 -66 -61 -61 -61 -61 -61 -61 -64 -61 -59 -59 -59 -56 -60 -63 -59 -58 -58 -55 -55 -49 -56 -58 -61 -67 -70 -70 -69 -66 -69 -67 -64 -65 -63 -63 -63 -61 -61 -61 -61 -63 -63 -63 -59 -64 -75 -72 -70 -72 -70 -69 -69 -70 -69 -70 -69 -67 -69 -67 -67 -67 -64 -64 -64 -64 -64 Т 7 7 -69 -17 -19 -11 -19 -11 -15 -11 -11 -11 -11 -11 -11 -11 -19 -19 -11 -19 -11 -17 -17 -17 -17 -17 14.504 -67 -70 -75 -75 -75 -72 -72 -73 -73 -77 -75 -72 -72 -72 -72 -72 -72 -70 -70 -70 -69 -67 -66 -66 -66 -64 -56 -41 -32 -39 -47 第2図 デジタル赤外データ出力図の例。1983年8月8日03Z,単位 °C. HET:中心域内の最高

温度, LST: 中心域を完全に取りまいている最低の温度, T: (T数).

中心から 100 km 以内の平均 T_{BB} と中心気圧との間 で は,観測時よりも,12時間ないし24時間後に,高い相関 があることを示した.

本報告は、これらの調査の結果をあとづける意味で、 台風強度示数(以後T数と記す)の変化と、中心気圧の 変化を、台風8305について比較したものである。

2. **T**数の算出

第2図に示す様に、台風の中心から、緯度,経度とも 1.5度の範囲に、0.1度の格子で赤外データを、GMS の VISSR データから出力する.次に、中心域(中心から 0.2度以内)における最高の温度(以後 HET と記す) およびその外側で中心を取り巻いている最低の温度(以 後 LST と記す)を求め、この二つの温度を使って、第 3図からT数を算出する.この方法は、Dvorak (1982) がT数算出の簡便法として紹介したものを、若干変えた ものである. 第2図の例では、HET=8°C、LST=-77°C で、T 数は第3図から7.7と算出される。

3. 工数の変化と中心気圧の変化の比較

上記の方法で求めた1983年8月7日00乙から8月14日 00乙までの3時間ごとのT数(DIR)を第4図に示す. 図には、中心気圧の変化と比較するため、気象庁予報部 が決定した中心気圧(JMA)と米軍観測機が測定した 中心気圧(RCP)も記入してある. DIR にみられる3 時間程度の小変動を無視して見ると、衰弱期のみならず、 発達期や定常期でも、T数の変化が、中心気圧の変化に 先行している様子が、かなり明瞭である.

DIR の,発達,衰弱,定常の起点をA,B,……,Kと すると,それに対応するような中心気圧の変化の起点が, A',B',……,H'のように決定できるのであろう.ただし, DIR 上の JとKに対応すると思われる,中心気圧上の 点は見出せない.また8月7日00Zから06ZまでのDIR

♥天気∥ 31. 1.

60

台風の中心気圧の変化に先行する台風強度示数の変化

Sumounding Temp	Use	≥17°	+14*	+11*	+8*	+5*	<u>+</u> 0°	-5°	-10*	-15*	-20*	-25*	-30*	-35*	-40*	-45*	-50*	- 55°	-60*	-65*	-70°	-75°	-80*
+0	3.9	1.3	+.1.	0	1	2	3											÷ .				1.1.1	
-2	3.9	+.3			6										, °								
-6	4.0	1.3	+.1														1					1.1	1 1
-10	4.0	1.4	+.2	· ···	1.1				2														
-12	4.1	1.4	+.2						- 2	. 1									÷				
-16	1.1	+.5	+.3	+.2	+.2	+.1	Ŭ		~				a						1.1				
-18	4.2	+.5	+.3	1 1	1 A	1.1	1.1.1	0		z -	-	· · ·											
-22	4.2	+.5	+.3	1						,									·		1.1		
-24	4.3	+.6	+.4	+.4	+-	*.2	*.1	*.1	ő	1	2	3	7	4						S			
-28	4.3	+.6	+.4		· .								1 '	T				1.1	1	1 ¹	· .	1	
-32	4.4	+.7	1	+.5	+.4	+.3	+.2	+.2	+.1	0	1	2	3				1.1.1.1		1.2.5	1	1	1.1.1	
-34	4.4	+.7	+.5																1 .		1	· · .	
-38	4.5	+.7	+.5			K.,		·			0									· · · · · ·	1.1		
-40	4.6	+.8	+.6	+.0	+.5	+.4	~	+.3	+.2	+.1	0	1	2	3	4								
-44	4.7	+.8	+.6		· .							0	1	2	3	4							
-48	4.8	+.9	+.7	+.7	+.6	+.5	+.5	+.4	+.3	+.3	±.2	+.7	0	1	2	3	4				1.1		
-50	4.8	+.9	+.7									4	5										
-54	4.9	+.9	+.7											L.					1			· · ·	
-58	5.0	+1.0	+.8	+.8	+.8	+./.	+.6	+.5	+.4	+.4	+.3	+.2	+.1	0-	1	2	3	4	2.5	1.00	1.1	1.1	1 1
-59	5.1	+1.0	1.8													1	2						
-61	5.2	+1.0	+.8												0	1 -	~	3					
-62	5.2	+1.0	+.9	+.8	+.8	Ŧ.8	+.7	+.6	+.5	+.5	+.4	+.3	+.2	+.1	0	1			1.1	- × - ×	1.1.1	1.	1.1
-64	5.3	+1.0	+.9	+.8						LT	6					0					1		
-65	5.4	+1.0	+1.0	+.9							2					· .					1.1		
-67	5.5	+1.0	+1.0	+.9	+.9	+.8	+.8	+.8	+.7	+.6	+.5	Ŧ.4 .	+.3	+.2	+.1	+.1	0	2	3	5			
-69	5.7	+1.0	+1.1	+1.0													0					1.26	1.0
-70	5.8	1:1.0	+1.1	+1.1	+1.0	+ 0		+.8													1		
-72	6.0	+1.1	1.1.1	411	+1.1	+.9	. n.	+.8	+.8	+.7	+.6	+.5	+.4	+.3	+.2	+.1	T6	2	4	6	-1.0	1	
-73	6.1	+1.1	+1.2	+1.7	11.1	+1.0	+.9		7	-					1.0		0				1	-1.1	
-75	6.3	+1.2	+1.2	+1.2	+1.1	+1.0	+.9		-	K						1 A		0	3	6	-1.0	-1.3	
-77	6.5	+1.2	+1.2	+1.2	+1.2	+1.1	+1.0	+.9	+.8	+.8	+.7	+.6_	+.5	+.4	+.3	+.2	+1.	0		K	9	-1.5	÷.,
-78	6.6	+1.2	+1.2	+1.2	+1.2	+1.1	+1.0											0	3	6	-1.0	-1.5	-1.6
-80	6.8	+1.2	+1.2	+1.2	+1.2	+1.1	+1.0	+.9	+.8	+.8	+.7	+.6	+.5	+.4	+.3	+.2	+.1	0	3	6	-1.0	-1.6	-1.8

Eve temp.

第3図 デジタル赤外データを使用してT数を求める数表. Dvorak, 1982による.

第4図 デジタル赤外データから求めたT数 (DIR), 気象庁予報部が決定した中心気圧 (JMA), 米軍観測機が測定した中心気圧 (RCP)の比較図

の変化は,7日12Zから18Zまでの中心気圧に対応する ようにも見えるが,7日00Z以前のデータがないので確 定はできない.

これら,対応する二点の時間差は,A~A'からI~ I'まで,それぞれ,9,6,9,15,6,3,3,9時間で, 平均8時間となっている.発達の部分,A~A',F~F', $H\sim H'$ の時間差は、9、3、9時間である.この結果は、 台風8003の発達時に、中心から200 km 以内の平均 T_{BB} の急速な下降が、中心気圧の急速な下降より、約9時間 前に現れたとする島田・内田 (1982)の報告と一致する.

1984年1月

61

台風の中心気圧の変化に先行する台風強度示数の変化

4. まとめ

簡易 Dvorak 法による T 数の変化が, 衰弱期のみな らず,発達期においても,中心気圧の変化に先行して現 れるということが,台風8305の場合に示された.このこ とが,一般的な事実であれば,Dvorak 法において,衰 弱時のみならず発達時においても,中心気圧の変化に対 する T 数の変化の先行性を考慮しなければならない.ま た,デジタル赤外データから簡単に計算される T 数は, 台風の急速な発達や衰弱の短時間予報の手掛かりにな る.今後,他の台風についても調査をつづける必要があ ろう.

謝 辞

本報告を作成するにあたり,気象衛星センターの櫃間 道夫解析課長をはじめ,課員諸氏,および,台風業務実 験の国際実験センター所員諸氏から貴重な御意見を頂き ました. ここに厚く感謝いたします.

文 献

- Dvorak, V., 1982: Tropical cyclone intensity analysis and forecasting from satellite visible or enhanced infra-red imagery, Report on the WMO seminar on the application of satellite data to tropical cyclone forecasting, Bangkok, Thailand, 24 May-4 June 1982.
- Rosenthal, S., 1978: Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales I; Model description and preliminary results, J. Atmos. Sci., 35, 258-271.
- 島田健司・内田雅夫, 1982: GMS によって測定さ れた等価黒体温度(T_{BB})を利用した 台風の強さ の予測(Ⅰ), 気象衛星センター技術報告第6号, 1-10.

NEWS

最近,農業・産業界等各方面で異常気象についての関心が高まっています.そこで「天気」編集委員会で は,昭和59年の新企画として,世界の異常気象について最新ニュースをお届けすることにいたしました.学 会員の皆さんの何かのお役にたてばと思います.なお,これはアメリカの NOAA で月2回発行している "Climate Impact Assessment, Foreign Countries"の邦訳で,気象庁気候変動対策室の御協力をいただいて います.

世界の異常天候とその影響評価(1)

(Climate Impact Assessment, November 27 - December 10, 1983)

1. 合衆国南東部——大雨・洪水

12月の第1週にルイジアナ,ミシシッピー,アラバマ, ジョージアで発生した洪水のため,1,200人以上の住民 が家を捨てて避難した.

被害は昨冬から春にかけてこの地方を襲った洪水より は軽かった.しかし、12月6日に生じたトルネードのた

め,アラバマ州セルマでは15人が負傷し,ルイジアナ州 ラプラスでは24人が負傷した。

雨が最も激しく降ったのはミシシッピー州の北部で, 特にグリーンウッドでは11月13日から12月3日までの間 に約400 mmの雨が降った.

2. 東ヨーロッパ――早ばつ

東ヨーロッパでは11月27日から12月3日にかけて暴風 雨のため25~75 mmの雨が降った.このため早ばつは 緩和され,水供給の状況と冬小麦の見込みも良くなっ た.しかし,過去3~4カ月の総降水量は平年の約60% にすぎず,水不足が解消されるためには,さらに数週間 以上にわたって多量の雨や雪が降る必要がある.早ばつ は西方に拡大しており,イタリア北部も含まれるように なった.

(注:上記各項目の番号は図中の番号に対応している.) (気象庁気候変動対策室 真野裕三)

『天気』 31. 1.

62

62