

宇宙から見た気象——No. 29

北太平洋地域の特殊雲列

ひまわり2号

1. はじめに

気象衛星からの可視雲画像には、時には口絵写真のよ うな奇妙な現象もある. これは特殊雲列(Anomalous line)と呼ばれている背の低い雲である. 特殊雲列は互 いに交差したり,総観規模の大気の流れとは無関係に見 える走向や外観をしているのが特徴で,船舶や,低空飛 行の航空機が通過した後,水蒸気が凝結して生ずると考 えられている. ここでは,北太平洋域を中心として,ひ まわりの画像上に見られる特殊雲列について述べてみよ う.

2. 特殊雲列の特徴

特殊雲列の特徴は,その外観にあるが,一本の長さは 長いもので1,000 km 近くに達し,幅は画像の分解能ギ リギリの数kmから,中には30 km をこえるものもあ る.その外観や,時間的な変化は,ひと口で言えば,飛 行機雲に似ている.一本の雲列の寿命は,昼間の可視画 像(00Z,03Z,06Z)に連続して確認できるものが多 いことから,おそらく半日以上はあるのではないかと推 定される.発生は普通,複数の雲列が同時に現れ,発現 領域は1,000 km 四方におよび,数日間継続することも ある.

1980年から1983年の4年間について5月から8月にかけての月別発生日数を集計すると第1図のようになり,

7月が最多で8月になると急に減少する.発生域は,北 緯40~50度,東経150~180度が大部分である.これら は,世界一の海霧多発域と知られる北海道から千島の東 海上とほぼ一致している.なお,この調査は,大部分が 拡大率の小さな円形可視画像に依ったこと,東経180度

高

崎

洋

見*

第1図 特殊雲列の月別発生日数 (1980~1983 の合計).

第2図 特殊雲列近傍の成層状態(根室).

より東方は衛星抑角が小さすぎること,また,中・上層 雲にかくされる場合があることなどを考慮すると,特殊 雲列の実際の発現数は,もっと多いと考えられる.

発現域の気圧系との関係は,低気圧の北西から南西象 限にあたる場合が多く,時には,口絵写真1,2のよう に,低気圧の動きに伴って発現域も移動するということ

1984年5月

^{*} Hiromi Takasaki, 気象庁予報課.

第3図 特殊雲列の移動(矢印). 1980年7月22日の00Z(口絵写真3)と03Z(口 絵写真4)により追跡.風は船舶資料による.

も珍らしくない.したがって,発現域は静隠というより 10~20ノットの風が吹いていることが普通であり, 雲列 が風下に流されるように移動する事実もうなずける.

特殊雲列は赤外画像では判別が困難で,層雲などと同 様にごく下層に存在する.また,一般的に霧域や,層雲 域で発現すると言われているが,むしろ層雲が,微細な (とは言っても衛星写真規模の話だが)層積雲に変化し つつある領域で発現しやすいように見える.成長して幅 のひろがった部分はクローズドセル状の層積雲で形成さ れている.周辺の雲の濃度の粗密が見えるために必要な 条件で,濃すぎる場所では,雲列が周辺の雲に埋没し, 存在の判別ができなくなる(たとえば口絵写真5,6の 雲列E群の南西部分).また口絵写真3,4のように層雲 や層積雲の消散域では雲列も例外なく消散してしまう. このように,特殊雲列がわれわれの目にとまるにはかな り微妙な条件が満足されなくてはならないようだ.

この調査では、雲列の発現が海洋上に限られていたた め、直接そこの大気の成層状態を知ることはできなかっ たが、北海道の東海上で発現した際の根室のゾンデ観測 による状態曲線(第2図)で、ある程度推しはかること はできよう(写真省略). この時の発現も、低気圧の後 面にあたり、下層に沈降性の逆転層が生じている. そし て海面から 500~600 m の厚さで湿潤層があり、状態曲 線はほぼ湿潤断熱線に沿い,層内の風の鉛直シャーは小 さい.層雲や層積雲はこの安定層に上面を抑制されてお り,おそらく,特殊雲列も同様であろう.

ロ絵写真3,4の雲列の移動を交点やキンクを手がか りに追跡すると第3図のように地上風とほぼ一致し,雲 列が下層の湿潤層内の気流に流されていると推定され る.また図では風に多少のシャーが存在し(雲列の移動 の早い所は20~25ノット,遅い所は10~15ノット),雲 列のキンクの発生(口絵写真 line B)や強化(line C) に結びついているようだ。

3. 特殊雲列の発生についての考察

雲列は、先に述べたように飛行機雲のような形態をし、雲列の一方の端が細く鋭く、他方は太くぼやけて見える(口絵写真5,6). そして、鋭い先端部分が雲列の発生部と考えるのが妥当であろう、第4図に先端部分および交点の追跡を示した。海面風と対応させると、交点は、前述した例と同様、その風に流されるかたちで10~15ノットで南下していることがわかる。一方、先端部は、これとは全く異なり、東西成分の大きな移動をし、しかも、西行きと東行きの2種類に分かれる。西行きは雲列が南東から北西に傾斜している。速度は15~20ノット、速いもので25ノットである。この速度は船舶のもの

▶天気// 31. 5.

42

第4図 特殊雲列の先端部分の動き. 1983年6月6日00Z(口絵写真5),03Z(口 絵写真6),06Zにより追跡. 〇印は先端の追跡,*印は交点の追跡. 風 は船舶資料による.

日間の船舶位置と航路. アルファベットは船名. 数字は船速(図中参照).

である.ちなみに,同時刻の航行船舶を気象庁印刷天気 図の電報資料からひろい出してみると第5図のようになった.この海域は日本と北米を結ぶ幹線航路にあたり, 進路がほとんど平行に定まっている.船速はほとんどが 10~25/ットで雲列の先端の動きと一致する.おそら く,船の機関から排出される水蒸気を多量に含んだ温排 気が周囲の冷湿な気魂をまきこみ,雲として成長しなが ら上空の安定層に達し,そこでもさらにゆるやかな対流 と拡散をつづけ層積雲にまでなるのであろう.飛行機雲 が,時には網雲や絹積雲になって幅広く成長することも

1984年5月

43

第6図 雲列モデル、矢印のコースに150km 間隔で交互に速度15ノットの船をな らべた場合、風は、北風15ノット。

あるようであるが,飽和蒸気圧の高いこのような下層で 大規模な雲列を生成できるのは、おそらく大型の船舶し かないのではないかと考えられる。

4. 雲列の特徴についての考察

特殊雲列の特徴のひとつは互いに直角に交差したりす ることである. 第6図は東北東から西南西に近いコース に150km 間隔で北米行きと日本行きの船を交互に並 べ,船速15ノット,下層風を北風15ノットと仮定した場 合の雲列の様子を示したものである.船が互いに航路を 横切らず平行に航行しても,風があれば図のように次々 と雲列の交差が生成され,西行き東行きの雲列の傾斜パ ターンも口絵写真5,6に類似している.実際には,航 路,船速のちがい,風のシャー等が絡むため,画像に見 られるようなより複雑な雲列パターンが生まれていると 考えられる. 5. おわりに

この調査では、残念ながら雲列の先端の船名まで特定 することはできなかった。衛星画像の分解能から判断し て、発生源の船は、写真の雲列のいわゆる先端より、さ らに相当先行していると考えられる。

これらの雲は航行する船舶からはどのように見えるの であろうか. 1万メートルをこえる高度を飛行する航空 機からは、はっきりと判別できるのではないだろうか.

文 献

- 駒林 誠, 1973: 気象の科学, NHK ブックス, 172.
- 新田次郎,山本三郎,1968: 雲,その生態と天気予 想,山渓カラーガイド,156-159.
- 気象衛星センター, 1976: 予報と解析への気象衛星 資料の利用.
- 和達清夫監修, 1960: 海洋の事典, 東京堂, 109-111.

▶天気// 31. 5.

宇宙から見た気象 北太平洋地域の特殊雲列 (説明は315~318ページ参照)

写真1 1980年7月2日00Z可視画像。Aに特殊雲列が見える。

写真2 1980年7月3日00Z可視画像、低気圧とともに発現域Aは移動し新たな発現域Bも見える。

写真3 1980年7月22日00Z可視画像.

写真4 1980年7月22日03Z可視画像.風のシヤーによりBにキンクが生じた。また、Cのキンクは強まった。

写真5 1983年6月6日00Z可視画像. E1, E2, E4はまだW1と交差していない。

写真6 1983年6月6日03Z可視画像. E1, E2, E4がW1と交差した.