## 雪結晶の成長機構と形に関する理論的研究<sup>\*</sup> 一昭和59年度日本気象学会賞受賞記念講演一

黒 田 登志雄\*\*

1. はじめに

雪は大気中の過飽和水分子が凝集し,成長した氷の結 晶で,その形は成長条件に応じて千差万別に変化する. 周知のように,中谷(1951,1954)によって,成長条件 の設定された実験室の中で人工雪の実験が行われて以 来,雪結晶の形と成長条件の関係を求める研究が精力的 に行われた(Aufm Kampe et al,1951; Mason,1953; Kobayashi,1957,1961; Hallett and Mason,1958).

第1図は、1960年初めまでの実験結果をまとめた小林 のダイアグラム(Kobayashi, 1961)に見られる、雪結晶 の形の変化を模式的に書き直したもので、そこには2つ の特徴がある.まず第一は,温度の低下に伴う晶癖変化 (habit change) である. すなわち, 雪結晶の基本的な 形が0°Cから-4°Cでは, 第1図に示す軸比 lc/la が1 より小さい六角板状に成長し, -4°C から -10°C まで は lc/la>1 の六角柱状に成長し、 -10°C から -22°C の間で再び板状になり、 -22°C 以下で柱状に成長す る. また, 低過飽和度状態では, 基底面 ({0001} 面) とプリズム面({1010) 面)で囲まれた 多面体が 安定に 成長するのに対して,過飽和度が増大するにつれて結晶 の稜や角が優先的に伸び始めて、多面体の形が不安定に なり、骸晶、針状結晶、樹枝状結晶などが現れる。この ような、多面体結晶の形態不安定 (morphological instability)と関係した形の変化が第二の特徴である。

近年,権田らは,温度,過飽和度以外に,雰囲気ガス の圧力や結晶サイズが晶癖変化と形態不安定の発生に及 ぼす影響を実験的に詳しく検討している。それらについ ては,権田の解説(1985)を御参照戴きたい。

以上のように、実験的に得られた、雪の結晶の形と成 長条件の関係を示すダイアグラムは、いわゆる"天から

\* Theoretical study of the growth mechanisms of snow crystals and their growth forms.
\*\* Toshio Kuroda, 北海道大学低温科学研究所.



第1図 雪結晶の晶癖変化および形態不安定の
 発生(黒田, 1984 a).

の手紙"を解読する鍵として、気象学的に重要な役割を 果たしてきた.しかしながら、ある成長条件が与えられ た時に、ダイアグラムに示される決まった形の結晶が成 長するのは何故だろうか? この疑問に答えようとし て、晶癖変化についての理論的解釈がいくつか 試みら れた (Mason et al, 1963; Hobbs and [Scott, 1965; Lamb and Scott, 1974).しかしながら、それらはいず れも既成の結晶成長理論を形式的に雪の成長に適用した もので、雪結晶の形の変化の本質を捕えたとは言い難 い.

過飽和状態で成長する結晶の形, すなわち成長形に は,結晶成長の種々の素過程が複雑に反映されているは ずである. その意味で,らせん転位によるスパイラル成 長理論で有名な Frank は, "結晶の形を理解すること は,結晶成長を理解することである"と述べている. 氷 結晶の気相成長の場合,成長の素過程として次の3つが

1985年3月

ある.1)気相から結晶表面へ向かう水分子の拡散過程, 2)結晶表面で分子が結晶相に組み込まれる過程(表面 カイネティクス),3)昇華熱の熱伝導過程.

このうちで、2)の表面カイネティクスは、表面構造 を通じて,注目した表面の結晶学的方位に依存する.す なわち,成長速度の異方性は,主として表面カイネティ クスを通じて現れる。したがって、基底面とプリズ ム面の成長速度比 R(0001)/R(1010) から決まる晶癖 (lc/la)の変化を説明するには、氷結晶の表面 カイネテ ィクスを正しく理解しなければならない(6.1.節). と ころで、従来の結晶成長理論では、分子的尺度で見て平 らな結晶表面(今後、スムース面と呼ぶ)を前提として 表面 カイネティクスを求めている(2章). しかしなが ら,ここで注意すべきことは,雪の成長温度が氷の融点 0°Cに近い高温であるという点である。そのため、氷結 晶表面が、どの温度でもスムース面であるというわけで なく、融点直下では、結晶表面は分子的尺度で見て荒れ ていたり、あるいは疑似液体層でおおわれている可能性 がある(3章). したがって, そうした表面のカイネテ ィクスを新たに検討する必要がある(4章).

一方,過飽和度の増大と共に起こる形態の不安定化 は,表面カイネティクスと同時に,気相中の水分子の拡 散過程が密接に関連した問題である(6.2.節).

本稿では、2、3、4章で表面構造と表面成長カイネテ ィクスの関係を取り上げる。そこでは、結晶表面での微 物理過程から見た凝縮係数の意味も考察される。また、 5章では、上に述べた成長の3つの素過程が律速過程と して果たす役割と、実験から表面カイネティクスについ ての情報を得る方法について考える。最後に6章で、晶 癖変化と形態不安定の発生についての理論的考察の要点 を述べる。詳細については原論文(Kuroda and Lacmann, 1982; Kuroda, 1982; Kuroda et al, 1977)を 御覧戴きたい。

## 分子的尺度で見て スムース な結晶表面の成長カイ ネティクス

2.1. 凝縮係数とカイネティック係数

気相から結晶表面に入射した分子がすべて,その場で 結晶相に 組み込まれる,という 理想条件での 成長速度 は,次の Hertz-Knudsen の式で表される.

$$R_{\max}^{H-K} = \frac{v_c(p-p_e)}{\sqrt{2\pi mkT}}$$
(1)

ここで, p は実際の水蒸気圧, pe は氷の飽和蒸気圧で ある. また, vc, m は結晶の分子体積と分子質量, k はボルツマン定数, T は絶対温度である. 上式で,  $p/\sqrt{2\pi mkT}$  は、単位面積の結晶表面を通じて単位時間に 結晶相に組み込まれる分子数で、 $p_e/\sqrt{2\pi mkT}$  は 逆に 結晶から気相へ出ていく分子フラックスである. この式 は、一定過飽和度の下での最高の成長速度を与える.

それに対して実際の成長では、表面に入射した分子が そのまま 100% 結晶相に 組み 込まれる わけでは ないの で、現実の成長速度は  $R^{H-K}_{max}$  よりも凝縮係数 (condensation coefficient) あるいは、昇華係数 (sublimation coefficient) と呼ばれる数因子  $\alpha(\leq 1)$  だけ小さい、す なわち、

$$R = \alpha \left( \sigma \right) R_{\max}^{H-K} \tag{2}$$

$$R = \alpha(\sigma) \frac{v_c(p - p_e)}{\sqrt{2\pi m k T}}$$
(2)'

である.  $R_{\max}^{H-K}$ は,過飽和度 $\sigma = (p-p_e)/p_e$ に比例し, これから示すように凝縮係数 $\alpha(\sigma)$ も一般に $\sigma$ に依存す るので(第5図),成長速度は $\sigma$ に対して非線形に応答 する(第6図).

ところで,結晶成長の分野では,成長速度を一般的に 表示する方法として次のカイネティック係数 $\beta(\sigma)$ を用 いる場合が多い.

$$R = \beta(\sigma)\sigma$$
(3)
(2)', (3) 式からわかるように、  $\alpha(\sigma) \geq \beta(\sigma)$  は

$$\beta(\sigma) = \frac{v_c \dot{p}_e}{\sqrt{2\pi m k T}} \alpha(\sigma) \tag{4}$$

の関係で結ばれるもので、2つの内容は本質的に同じである.

2.2. 沿面成長

雪結晶の形は成長条件に応じて敏感に変化するが,基本的な形は2つの底面({0001}面)と6つのプリズム面({1010}面)に囲まれた六角プリズムである. この2種の面は,元来,分子的尺度で見てスムースな稠密面である.融点直下の高温では,表面構造に変化が起こるのであるが,まず始めに,温度が低く両面がスムース面である場合の成長カイネティクスを考える.

過飽和状態におかれたスムース面には、2次元核生成 (第2図a)や、らせん転位の助け(第2図b)によっ て、次々とステップ(1分子層の厚みの段差)が供給さ れる(第3図).ステップに沿っては、キンクと呼ばれ る折れ曲がり点Kが多数存在し、そこに組み込まれた分 子は、エネルギー的に安定な結晶相の分子とみなせる. したがって、ステップは分子を吸い込んで前進し、スム ース面の厚みが増していく.このような成長様式は沿面

◎天気// 32. 3.







成長 (lateral growth) と呼ばれる.

次に,気相からスムース面へやって来た分子が,ステ ップに沿って存在するキンク位置で結晶分子になるまで の過程に注目して, 凝縮係数αを求めてみる。まず, 気 相の分子が結晶表面と衝突する過程での凝縮係数を α1 とすると,入射分子が結晶表面によって弾性反射されれ ば  $\alpha_1 < 1$  となる。 しかしながら、 実際には、 入射分子 は,結晶表面と相互作用を行っている時間内にその運 動エネルギー の大部分を 熱として 結晶へ 与えてしまう ので,入射分子は,いったんは,表面に物理吸着する (Hirth and Pound, 1963). したがって, 弾性反射によ って  $\alpha_1 < 1$  となる可能性は否定される. 他方,  $\alpha_1 < 1$  の 原因として,気相中で自由に回転していた分子が,吸着 状態でその配向に制限を受けるというエントロピー不利 によって,表面に吸着する分子の割合が減る,という効 果が挙げられる (Hirth and Pound, 1963). 最近, 氷 の気相成長の場合の α<sub>1</sub> が 10<sup>-1</sup> のオーダーであるという 実験報告があり(5章), それはこのような エントロピ ー拘束による可能性がある.

こうした過程を経て,基底面やプリズム面に吸着した 分子は,水素結合1本に相当する吸着エネルギー  $E_a$ の 分だけ,気相分子よりもエネルギーの低い状態にある. しかしながら,熱ゆらぎによって  $E_a$ 以上のエネルギー を受け取った分子は、表面の分子との間の水素結合を断 ち切って再び気相へと離脱していく.ただし、吸着分子 は、表面に滞在中、1つの格子点にとどまっているので はなく、表面の格子点上を2次元的に拡散する.この平 均の表面拡散距離 xs(第3図)は、次式で与えられ、お よそ格子間隔 a の数百倍と推定される (Burton, Cabrera and Frank, 1951).

 $x_s = a \exp\{(E_a - E_{sd})/2kT\}$  (5) ここで,  $E_{sd}$  は表面拡散に必要な活性化エネルギーである.

ところで、多数のキンクを備えたステップを中央には さむ幅 2x<sub>s</sub> の領域に入射し、 $\alpha_1$  の割合でそこに吸着し た分子は、気相へ離脱するまでにキンク位置まで拡散 し、次々と結晶相に組み込まれていく、すなわち、吸着 分子集団の中でステップへ向かう 2次元拡散流が起こ り、ステップは前進する、ここで、いったん表面に吸着 した分子が、表面拡散によってステップに流れ込んで結 晶分子になる割合を  $\alpha_2$  とすると、ステップを中央には さむ幅 2x<sub>s</sub> の領域では明らかに  $\alpha_2=1$  である、したがっ て、この領域は捕獲領域と呼ばれる(第3,4図). 他 方、ステップから十分離れた場所で吸着した分子は、ス テップに到達する前に気相へ離脱してしまい、結晶成長 に寄与できない、すなわち、捕獲領域以外では、 $\alpha_2=0$ である、したがって、結晶表面を捕獲領域が占める割合 に比例して、表面全体としての  $\alpha_2$  が大きくなる.

2.3., 2.4. 節で示すように,低過飽和度では,ステッ プの供給源が不活発で,ステップ間隔 $\lambda$ は,2 $x_s$ よりも 十分大きくなる(第4図a). その場合, $a_2=1$ の捕獲 領域がスムース面を占める割合は $2x_2/\lambda$ である. したが って,面全体としての $\alpha_2$ は $2x_s/\lambda$ となる. 一方,高過 飽和度でステップの供給頻度が増して $\lambda \ll 2x_s$ となる と,スムース面全体が捕獲領域でおおわれるので,面全 体の $\alpha_2$ が1となる(第4図b).

ここでは直観的に沿面成長における凝縮係数を求めた が,吸着分子の拡散方程式を解いた BCF 理論 (Burton, Cabrera and Frank, 1951) によれば,

$$\alpha_2 = \frac{2x_s}{\lambda} \tanh \frac{\lambda}{2x_s} \tag{6}$$

$$\simeq \begin{cases} 2x_s/\lambda & (\lambda \gg 2x_s) \\ 1 & (\lambda \ll 2x_s) \end{cases}$$
(6)'

となる.(6)式において、 $\lambda \gg 2x$ 、 $\lambda \ll 2x_s$ の極限をとった(6)/式は、直観的に導いた関係と一致している.

以上をまとめると,沿面成長の成長速度と 凝縮係数 は次のようになる.

1985年3月

(7)

(10)





 $R = \alpha(\sigma) \frac{v_c(p - p_e)}{\sqrt{2\pi m k T}}$ (2)'

$$\alpha(\sigma) = \alpha_1 \alpha_2(\sigma)$$

したがって,具体的なステップの供給機構を検討して, ステップ間隔λの過飽和度(σ)依存性を求めて,それを (6)式に代入すれば,凝縮係数((7)式),および成長 速度((2)/式)のσ依存性が得られる.

2.3. 2次元核成長機構

沿面成長が継続するために不可欠なステップの供給機構の1つが,第2図aに示す2次元核成長機構である.

スムース 面上の 吸着分子集団の 中で,ゆらぎによっ て,安定な 2 次元核が生成される頻度 J [個/cm<sup>2</sup>s] は, 2 次元臨界核の生成自由エネルギー  $4G^*$ を通じて過飽 和度  $\sigma = (p - p_e)/p_e$  に敏感に依存する.すなわち,

| $J \propto \exp(-\varDelta G^*/km{T})$      | (8) |
|---------------------------------------------|-----|
| $\Delta G^* = \pi \kappa^2 a^2 / kT \sigma$ | (9) |

上式で, κ [erg/cm] は2次元核のふちの部分のエネル ギー不利(3次元核の表面エネルギー不利に相当)で, ステップ・エネルギーと呼ばれるものである(第2図).

Jは、  $\sigma$ が臨界値  $\sigma_c$ を越すと急激に大きくなる. し たがって、 $\sigma > \sigma_c$ では、1つの結晶表面上のあちこちで 2次元核の生成と成長が起こると同時に、先に生成され て成長中の核の上で次の核生成が起こる. その結果、結 晶表面には、第2図aのような成長丘がつくられる. こ の成長丘を構成するステップの間隔  $\lambda$ は、核生成頻度 J が大きい程、また、ステップの前進速度 v が小さい程、 小さくなる. すなわち、

$$\lambda = (\pi/3)^{-1/3} v^{1/3} j^{-1/3}$$

第5図には、(6)~(10) 式から求めた2次元核生成機構による凝縮係数  $\alpha^n(\sigma)$  の $\sigma$ 依存性が定性的に示されている。また、この機構による成長速度  $R^n(\sigma)$  の $\sigma$ 依存性は、第6図に示されている。



第5図 凝縮係数  $\alpha(\sigma)$  およびカイネティック係数  $\beta(\sigma) = (v_c p_e/\sqrt{2\pi m kT}) \alpha(\sigma)$ の過飽和度 依存性.  $\alpha^n: 2$ 次元核成長機構,  $\alpha^s: スパ$ イラル成長機構,  $\alpha^a: 付着成長機構, \alpha^{ql}:$ V-QL-S成長機構,



 第6図 成長速度 R(σ)の過飽和度依存性. R<sup>n</sup>:
 2次元核成長機構, R<sup>s</sup>: スパイラル成長機構, R<sup>a</sup>: 付着成長機構, R<sup>al</sup>: V-QL-S 成長機構.

2.4. スパイラル成長

一般的な気相成長の場合, 2次元核生成に必要な臨界 過飽和度  $\sigma_c$  は、数10%程度と推定されている. しかし ながら,現実には、1%あるいは、それ以下の過飽和度 で成長が起こる場合がある. そのような、2次元核成 長理論と実際の成長の不一致を説明するのが、Frank (1949) によって提唱された次のスパイラル成長機構で ある.

らせん転位と呼ばれる線状の格子欠陥が,結晶内部から結晶表面に突き出ていると(第2図bのS点),その

▶天気/ 32. 3.

表面には、必ず、S点に端を持つ1本のステップが生じる. このステップは、吸着分子を取り込んでいくら前進しても、らせん転位の持つ幾何学的必然性から、決して 消滅することがない. その結果、S点を中心として定常 的に回転するスパイラル 模様をつくり出しながら、結 晶表面 が厚くなっていく. Burton・Cabrera・Frank (1951)の解析によれば、このスパイラルは、隣りあうス テップ間隔が等しいアルキメデス・スパイラルで、 λは ステップ・エネルギー κ に比例し、過飽和度 σ に反比例 する.

$$\lambda = 19 \kappa a^2 / kT\sigma \tag{11}$$

(6), (7), (11) 式から, スパイラル成長機構の凝縮 係数 a<sup>s</sup>(σ) は次のようになる (第5図).

$$\alpha^{s} = \alpha_{1} \frac{\sigma}{\sigma_{1}} \tanh \frac{\sigma_{1}}{\sigma} \tag{12}$$

$$=\begin{cases} \alpha_1 \sigma / \sigma_1 & (\sigma \ll \sigma_1 : \lambda \gg 2x_s) \\ \alpha_1 & (\sigma \gg \sigma_1 : \lambda \ll 2x_s) \end{cases}$$
(12)'

$$\sigma_1 = \frac{\lambda}{2x_s} \sigma = \frac{9.5 a^2 \kappa}{kT x_s}$$
(13)

スパイラル成長機構の成長速度  $R^{s}$  は,第6図に示すように, $\sigma \ll \sigma_{1}$ では $\sigma^{2}$ に比例し, $\sigma \gg \sigma_{1}$ では $\sigma$ に比例する ((2)', (12) 式).

(6),(8),(9),(10) 式,また,(12),(13) 式から わかるように、2次元核生成機構においてもスパイラル 成長機構においても、ステップ・エネルギーκが小さい 程,成長速度は大きい、したがって、氷の基底面とプリ ズム面がどの温度でもスムース面であるならば、晶癖、 すなわち、両面の成長速度の大小関係は、結晶構造から 決まる両面における κの大小関係から一義的に定まって しまい、温度の低下と共に起こる3度の晶癖変化(第1 図)は理解できない。

したがって、1章ですでに指摘したように、融点0°C 直下の高温で氷の結晶表面に存在すると言われている疑 似液体層について熱力学的見地から検討し、そのような 表面の成長カイネティクスを新たに考える必要がある.

#### 3. 融点直下における氷の表面構造一疑似液体層---

氷結晶表面 が 融点直下 で疑似液体層 (quasi liquid layer) で おおわれているという仮説は、約130年前に
M. Faraday によって提唱され、近年になって、理論 (Fletcher, 1962, 1968; Lacmann and Stranski, 1972),
実験 (Kuroda and Lacmann, 1982 を見よ)の両面か ら 再検討 された. 最近, Kuroda・Lacmann (1982)
は、Lacmann・Stranski の現象論的モデルを用いて、





疑似液体層の厚みの温度依存性と表面方位依存性を検討 し、次節の結果を得ている.

3.1. 疑似液体層の厚みの温度依存性と方位依存性

融点以下の温度での疑似液体層の存在は,液体相のバ ルク自由エネルギーの観点からは系全体の自由エネルギ ーの不利をもたらす.その不利にもかかわらず疑似液体 層が熱力学的に安定に存在しうる要因は,裸の氷結晶表 面が液体層でおおわれることによる界面自由エネルギー の低下にある.すなわち,次式で定義される氷結晶表 面の水によるぬれ易さを表すパラメータ 4 σ<sub>∞</sub> が正にな る.

$$\Delta \sigma_{\infty} = \sigma_I - \langle \sigma_w + \sigma_{I/W} \rangle > 0 \tag{14}$$

ここで  $\sigma_{I}, \sigma_{W}, \sigma_{I/W}$  はそれぞれ,蒸気一氷結晶,蒸気一水,氷一水の間の界面張力,すなわち界面自由エネルギ ー密度を表す.したがって,液体相のバルク自由エネル ギー不利が疑似液体層の厚み  $\delta$  を減少させようとする一 方で,界面自由エネルギーを低下させるために  $\delta$ が増加 しようとする傾向がある.その結果,両傾向の兼ね合い から氷結晶と平衡状態にある疑似液体層の厚み  $\delta_{eq}$  が決 まる.0°Cではバルクの水と氷が共存するので  $\delta_{eq}$  は無 限大となる.また温度の低下にともなって液体相のバル ク自由エネルギーの不利が増大するため  $\delta_{eq}$  は小さくな り,臨界温度  $T_{I/I}$  で1分子相の厚みになる(第7図). この時,水分子による氷結晶表面の被覆率  $\theta=1$  と定義 する.したがって0°C から  $T_{I/I}$  までは氷結晶表面は 疑似液体層でおおわれる(第7図).

 $T_{I/I}$ 以下の温度では  $\theta < 1$ の水分子吸着が起こり, 表面は分子的尺度で見て凹凸の多い荒れた面になると予 測される(第7図). さらに 温度が低下して次の臨界温 度  $T_{I/I}$ 以下になると,吸着水分子数が非常に僅かな (例えば  $\theta < 0.02$ ),2章 で取り上げたような分子的尺度 で見てスムースな表面が現れる(第7図).

113

1985年3月

ところで、容易に相像できるように、ぬれ易さのバラ メータ  $\Delta \sigma_{\infty}$  (14) 式が大きい程、 $\delta eq$  は大きい.また、  $\Delta \sigma_{\infty}$  は  $\sigma_{I} \geq \sigma_{I/W}$  を通じて表面の結晶学的方位に依存 する。結晶表面で切断されている水素結合の密度から表 面エネルギー密度を求めるブロークン・ボンド・モデル によれば、プリズム面の方が  $\sigma_{I}$  が最小の基底面よりぬ れ易い.すなわち、 $\Delta \sigma_{\infty}(10\overline{10}) > \Delta \sigma_{\infty}(0001)$  である。 そのため、プリズム面上の疑似液体層は、同一温度の基 底面上のものよりも厚く、より低温まで存在しうる(第 9図).すなわち  $T_{I/II}(10\overline{10}) < T_{I/II}(0001)$  である。 また、荒れた面からスムース面への転移温度  $T_{II/II}$  に ついても、 $T_{I/II}(10\overline{10}) < T_{II/II}(0001)$  の関係が予想さ れる。

3.2. 偏光解析法による疑似液体層の研究

氷結晶表面の上の疑似液体層の存在を示す実験は多い が,その性質や厚みの温度依存性と結晶方位依存性を精 密に測定した実験はほとんど無い.最近,古川・山本・ 黒田 (1984; Yamamoto et al, 1984) は, 偏光解析法 によって,基底面とプリズム面上の疑似液体層の厚みの 温度依存性と光学的性質を測定している.結晶表面に直 線偏光のレーザー光を入射させた時,その表面が分子的 尺度でスムースであるならば,反射光は直線偏光のまま である.他方,結晶表面に疑似液体層のような遷移層が ある場合は,反射光は,楕円偏光となる.偏光解析法と いうのは,反射光の楕円偏光状態を精密に測定して結晶 表面上の遷移層の屈折率 n と厚みδ (光の波長以下の厚 みの測定も可能)を求める手法である.この実験によっ てこれまでに,次のような結果が得られている.

1) 融点直下の氷結晶表面(基底面では -3°C 以上, プリズム面では -4°C以上)には,屈折率 n が 1.330 の 遷移層が存在する.ところで,0°C のバルクの水の屈折 率が 1.333, 氷の屈折率が 1.308 であるから,その遷移 層は,液体にきわめて近い性質を持った疑似液体層であ る.

2) その厚みは,温度上昇と共に急激に増加するが, そのふるまいは,基底面とプリズム面で異なる。

これらの結果は, Kuroda・Lacmann の理論 (1982) と定性的に一致している. 今後, さらにデータを畜積し て, 詳しい解析を行う予定である.

# 表面構造変化にともなう表面 カイネティクス の変化

温度の低下と共に、前章で述べた表面構造の変化が起

こると、それぞれの構造に対応して、3つの表面カイネ ティクスが現れる。

4.1. V-QL-S 成長機構 (0°C>T>T<sub>I/I</sub>; θ>1)

疑似液体層でおおわれた結晶表面の気相成長は、水蒸 気( $\underline{V}$ apour)分子の疑似液体層( $\underline{Q}$ uasi  $\underline{L}$ iquid Layer) への凝縮過程と,疑似液体層と氷結晶( $\underline{S}$ olid)との界面で の結晶化過程の 2 つが同時に進行して起こる(Kuroda and Lacmann, 1982). ここで、気相成長する氷結晶の 完全性は高く、らせん転位は含まないと仮定すると、こ の V-QL-S 成長機構の異方性は、QL/S 界面でつくら れる 2 次元核の生成自由エネルギー  $4G^*$ の異方性から 決まる. ブロークン・ボンド・モデルからステップ・エ ネルギー不利  $\gamma_{ql}$ を求めると、基底面上の 2 次元核の  $4G^*(0001)$ はプリズム面上  $4G^*(10\overline{10})$ のよりも大きい ことがわかる. したがって、両面とも疑似液体層でおお われた温度領域では六角板状の晶癖が期待される.

また、結晶表面が疑似液体層でおおわれると、2次元 核のステップ部分の分子が疑似液体層の分子と相互作用 を行えるので、 $\gamma_{ql}$ は、裸の表面( $\theta < 0.02$ )の2次 元核の7よりも1桁以上小さくなる。したがって、融点 直下の高温度では、裸のスムース表面では2次元核生成 が全く起こらないような低過飽和度での成長が可能とな る(第5図の $\alpha^n \ge \alpha^{ql}$ ,第6図の $R^n \ge R^{ql}$ を比較せ よ).

4.2. 付着成長機構  $(T_{I/I} > T > T_{I/I}; 1 > \theta > 0.02)$ 水分子が多数吸着した  $(1 > \theta > 0.02)$  表面は,分子的 尺度で見て 凹凸の多い荒れた 面となるので (第7図), 気相から入射して表面に吸着した分子はそのまま結晶相 に組み 込まれる. このような 付着成長機構の成長速度  $R^{a}$ は, 一般的な Hertz-Kundsen の式  $((2)'式) o \alpha(\sigma)$ が  $\alpha_{1}$  に等しい場合  $(\alpha_{2}=1)$  に相当する (第5図  $\alpha^{a}$ ). したがって,  $R^{a}$  は低過飽和度から  $\sigma$  に比例する (第6 図  $R^{a}$ ). また,  $R^{a}$  は他の成長カイネティクスと比べて 最も大きい.

De Haan ら (1974) のモンテカルロ・シミュレーシ ョンによれば,表面カイネティクスは,平衡状態での吸 着分子(結晶と同種分子)の被覆率 $\theta$ によって区別され る. おおざっぱに言って, $\theta$ >0.02 では付着成長が,  $\theta$ <0.02 では2次元核成長(2章)が起こる.

 スムース面の 2次元核成長機構 (T<T<sub>Ⅱ/Ⅲ</sub>; *θ*<0.02
 </li>

 $T_{II/II}$ 以下の温度では、水分子による被覆率が非常に わずかな ( $\theta < 0.02$ )、2章で取り上げたスムース面が現

▶天気// 32. 3.

114

(15)

れ,通常の2次元核生成による成長が起こる(第2図 a、第7図)

## は-

2~4章で示したように、氷結晶のいろいろな表面構 造に対応して,種々の表面成長カイネティクスが現れ る. また, それぞれのカイネティクスにおいて, カイネ  $ティック係数 \beta$  (凝縮係数  $\alpha$ ) あるいは成長速度 Rは、 異なる過飽和度依存性を示す(第5図,第6図).とこ ろで、前章までは、結晶をとり囲む気相の致る所で、水 蒸気圧 p と温度 T が一様である、としてきた. しかしな がら, 実際の結晶成長の場面では, *p*, *T* は一様でな い. すなわち, p は, 結晶から十分遠方での値 p<sub>∞</sub> か ら,水分子の吸い込み口である結晶表面での値 bs へ向 かって減少し、Tは、遠方での値 $T_{\infty}$ から、昇華熱を発 生する結晶表面での値 Ts へと増加する. したがって, これまで、 $\beta や \alpha$ ,あるいはRを議論する際にでてきた 過飽和度 σ は, 正確には, 次式で定義される結晶表面に おける過飽和度 σs をさすものと考えるべきである.

$$\sigma_s = (p_s - p_e(T_s))/p_e(T_s)$$
 (15)  
雪の結晶成長を扱った従来の多くの理論では、 $p_s$  は  
 $T_s$  に見合う氷の飽和蒸気圧  $p_e(T_s)$  に等しい、すなわ  
ち $\sigma_s = 0$  と仮定されてきた、しかしながら、表面カイネ  
ティクスを考慮するためには、表面でのわずかな過飽和  
度 $\sigma_s$  が重要だということを始調しておきたい

さて、 $P_{\infty}$ ,  $T_{\infty}$ は、実験条件として与えられるもので あるが, ps,Ts は未知量である. したがって, これらの 値を決定するには、2つの独立な条件、すなわち、結晶 表面での熱収支条件と物質収支条件が必要である。ここ で、熱収支条件を通じて、成長の素過程(第1章)の1) 拡散過程と3)熱伝導過程がカップルし、物質収支条件 を通じて1)拡散過程と2)表面カイネティック過程が カップルする、したがって、これらの過程をセルフ・コ ンシステントに解くことによって、3つの素過程を同時 に考慮した成長速度の式が得られる (Kuroda, 1984).

$$R = \frac{(v_c p_e(T_{\infty})/kT_{\infty})\sigma_{\infty}}{\frac{p_e(T_{\infty})v_c}{kT_{\infty}\beta(\sigma_s)} + \frac{\delta_d}{D} + \left(\frac{\partial p_e}{\partial T}\right)_{T_{\infty}} \frac{\delta_t l v_c}{KkT_{\infty}}}$$
(16)

ここで、文字記号の約束は次のとおりである。σω:遠方 での過飽和度 ( $[p_{\infty}-p_e(T_{\infty})]/p_e(T_{\infty})$ ), D:気相中の 水分子の拡散係数、 $\delta_a$ :拡散層の厚み、 $\delta_t$ :熱拡散層の 厚み, K:熱伝導度, l:単位体積あたりの昇華熱。ま



第8図 -30°C, 空気圧 0.3 Torr と 250 Torr で 測定された基底面とプリズム面の成長速度  $R_{obs}(\sigma_{\infty})$ と理論式を組み合わせて推定し たカイネティック係数 βの表面過飽和度 (os)依存性 (Kuroda and Gonda, 1984).

た,カイネティック係数β(σε)の変数である表面の過飽 和度 σs は, 次式を 満足する 過飽和度として 与えられ る.

$$\sigma_{s} = \sigma_{\infty} \Big[ 1 + \beta(\sigma_{s}) \Big\{ \frac{kT_{\infty}\delta_{d}}{p_{e}(T_{\infty})Dv_{c}} \\ + \Big( \frac{\partial p_{e}}{\partial T} \Big)_{T_{\infty}} \frac{\delta_{l}l}{p_{e}(T_{\infty})K} \Big\} \Big]^{-1}$$
(17)

(16) 式で注目すべき点は、分子が巨視的な成長の駆 動力  $\sigma_{\infty}$  に比例し、分母が表面カイネティック過程、拡 散過程, 熱伝導過程の 抵抗の 和になって いることであ る.したがって、これらの抵抗値を推定して、温度  $T_{\infty}$ 、 過飽和度  $\sigma_{\infty}$ , 空気圧  $p_a$  などによって指定される任意の 成長条件下で,3つの素過程が結晶成長の律速過程とし て果たす役割を調べることができる.

ところで、結晶成長の実験において直接に測定される のは、成長速度  $R_{obs}(\sigma_{\infty})$  と巨視的な過飽和度  $\sigma_{\infty}$  の関 係である、一方、表面カイネティクスについての情報を 得るために必要なのは、成長速度  $R_{obs}(\sigma_s) = \beta(\sigma_s)\sigma_s$  あ るいはカイネティック係数  $\beta(\sigma_s)$ の  $\sigma_s$  依存性である. そこで、Kuroda · Gonda (1984) は、 拡散過程と熱 伝導過程の抵抗値に推定値を用いて, T=-30°C, 空気 圧 pa が 0.3 Torr と 250 Torr で測定した (0001) 面と (1010) 面の成長速度  $R_{obs}(\sigma_{\infty})$ の  $\sigma_{\infty}$  依存性を解析し, カイネティック係数  $\beta(\sigma_s; T, p_a)$  の性質を調べた(第 8図). その結果,空気圧の増加は,Dを通じて拡散過 程を 遅くするだけでなく、 同一の  $\sigma_s$  に対する  $\beta(\sigma_s;$ T, pa) を小さくすることが見つけられた. しかも, そ の効果は(0001) 面よりも(1010) 面に対して大きく現

1985年3月



第9図 基底面, プリズム面の成長カイネティクスの 組み合わせと晶癖 (Kuroda and Lacmann, 1982).

れた. また, 空気圧が 0.3 Torr の場合, σ<sub>s</sub> が増大する と凝縮係数 α が最大値 2×10<sup>-1</sup> に達した.

今後,このような解析を,広い温度範囲にわたって行 うことによって,温度に依存した種々の表面構造に対応 した表面カイネティクスを実験的に確認することが必要 である.

#### 6. 雪結晶の形の変化のしくみ

この章では、これまで議論してきた雪結晶の成長の種 々の素過程が、どのように雪の形の変化に関与している かについて考える.

#### 6.1. 晶癖変化

氷結晶の表面構造と表面カイネティクスは、転移温度  $T_{I/II} \ge T_{II/II}$ で2度変化する(3章,4章).また, 2つの転移温度はそれぞれ、基底面よりもプリズム面に 対して低いと予想される(3章).その結果、温度の低 下と共に、基底面とプリズム面の表面カイネティクスの 組み合わせが変わり(第9図)、複雑な晶癖変化を引き 起こす、というのが Kuroda・Lacmann (1982)の考 えである.

第9図の領域 A(0°C>T>-4°C) では、両面とも V-QL-S 機構で成長し、QL/S 界面での2次元核生成頻 度のより高いプリズム面の成長速度が大きい. そのた め、六角板状の結晶が成長する. 領域 B(-4°C>T> -10°C) では、プリズム面が V-QL-S 機構で成長して いるのに対して、荒れた (1> $\theta$ >0.02) 基底面は、成長 速度の最も大きい付着成長を行うので、晶癖は六角柱と



 第10図 (a) 多面体結晶の周囲の分子の等濃度線.
 (b) 結晶表面に沿った過飽和度 σ<sub>δ</sub>(x) の 不均一(黒田, 1984 a).

なる。領域 C(-10°C>T>-20°C) では、プリズム面 で付着成長が始まるのに対して,スムース面となった基 底面は成長速度の遅い2次元核成長を行うので,再び六 角板が成長する。領域 D(T<-20°C) では、両面とも スムース面になり、通常の2次元核機構で成長する、こ の場合,2次元核生成のより難しい基底面はプリズム面 より成長が遅いので、六角板が予想される。ただし、高 過飽和度になれば,基底面上の2次元核生成頻度が急激 に上昇し, 基底面の成長が プリズム 面の成長に 追いつ く、この時,軸比  $l_c/l_a$  は高々1であるから,表面カイネ ティクスの考察だけでは、低温で実際に観察される六角 柱の晶癖は理解できない. しかしながら, 表面カイネテ ィクスによってひとたび  $l_c/l_a=1$  となれば、結晶周囲 の拡散場の効果で基底面に形態不安定性が発生し(6.2. 節), さや状あるいは針状の結晶として lc/la>1 となる 可能性がある (Irisawa, Kuroda and Ookawa, 1983).

#### 6.2. 形態不安定の発生

第1図に示したように、低過飽和度で安定に保たれて いた多面体の形態は、高過飽和度では結晶の角や稜の優 先成長によって不安定になる.このような形態不安定の 発生には、気相中の水分子の拡散過程と表面での微視的 なカイネティック過程が密接に関連している.

有限な大きさの多面体結晶が成長している場合,結晶 周囲の拡散場の効果で,結晶表面に沿った過飽和度  $\sigma_s$ は不均一になる.第10図に定性的に示すように,気相側 に一番突き出た結晶の角の過飽和度  $\sigma_s(\pm L/2)$  が表面 内で最大で,表面の中央の 過飽和度  $\sigma_s(0)$  が最小とな る.また,表面に沿った過飽和度の不均一 { $\sigma_s(L/2) - \sigma_s(0)$ } は結晶サイズLと,表面での法線方向の濃度勾 配 qに比例する.なぜならば,{ $\sigma_s(L/2) - \sigma_s(0)$ } は表 面と 交差する等濃度線の数に比例 するからである(第 10図).

$$\{\sigma_s(L/2) - \sigma_s(0)\} \propto qL \tag{18}$$

一方,表面カイネティクスの駆動力は表面過飽和度 σs であるから,σs の不均一が,多面体結晶の形態不安

▶天気// 32. 3:



第11図 ステップ分布の調整による表面過飽和度の 不均一の相殺(黒田, 1984 a)

定を引き起こす因子と言える.ところが,結晶から遠方 の過飽和度  $\sigma_{\infty}$  が低い場合には,表面過飽和度の不均一 にもかかわらず,多面体結晶は巨視的には平面を維持し て安定に成長する.その仕掛けを 最初に 説明したのは Chernov (1974) であった.すなわち,2章の(3)式を この問題にあてはめると,カイネティクスから決まる局 所的な成長速度  $R_k(x)$  は,着目した場所 x の表面過飽 和度  $\sigma_s(x)$  とそこのステップ密度  $1/\lambda$  に依存したカイネ ティック係数  $\beta(x)$  の積で与えられる.

 $R_k(x) = \beta(x)\sigma_s(x)$  (19) また,(4),(6),(7) 式からわかるように、 $\beta$ はステッ プ密度が高い程大さい、したがって、 $\sigma_s(x)$  が減少する 表面中央へ向かって、ステップ密度が高くなるようにス テップの分布の調整が行われれば、表面全体が共通の速 度

 $R_k(x) = R = - c$ 定

で成長しうる. ステップ密度の変動による表面の局所的 な変動が高々 10<sup>-2</sup>rad 程度であっても,10%程度の表面 過飽和度の不均一を相殺できるので,その場合,巨視的 には多面体が維持される.第11図には,具体的なステッ プ分布の調整の様子が誇張して描かれている. すなわ ち, $\sigma_s(x)$ の高い結晶の角で頻ばんに起こる2次元核生 成によって供給されたステップが, $\sigma_s(x)$ の低い表面中 央に向かって進むにつれて滅速され,ステップ密度を高 くするのである.

以上のような Chernov の定性的議論の後, Kuroda・ Irisawa・Ookawa (1977) は, 溶液から成長する正六 面体結晶について, 1) 拡散過程, 2) 表面カイネティ クス, 3) 表面上のステップ分布, をセルフ・コンシス テントに解いて, 多面体が安定に成長している時の成長 速度と, 微視的に見た結晶表面の形を定量的に求めた. また, このような, 多面体を維持する安定成長から, 第 1 図に示した形態不安定の発生へと移り変わる仕組を詳 しく検討した. 結果を要約すると次のようになる. 形態 不安定化の因子である 表面に 沿った 過飽和度の 不均一  $\{\sigma_s(L/2) - \sigma_s(0)\}$  は表面での 法線方向の 濃度勾配 q に 比例する ((18) 式). また q は成長速度 R と比例関係に あるので, 遠方の過飽和度  $\sigma_\infty$  が大きくなると, R を通 じて  $\{\sigma_s(L/2) - \sigma_s(0)\}$  が増加する. 一方, ステップ密 度の調整によるカイネティック係数  $\beta(x)$  の増大には上 限がある ((4), (6)', (7) 式). したがって,  $\sigma_\infty$  が大 きくなり過ぎると, ステップ分布の調整によって表面過 飽和度の不均一が相殺しきれなくなり, 結晶の角が表面 の中央に対して相対的に突出してくるのである. このよ うな 正六面体結晶の 形態不安定が 発生する 限界の条件 は,  $\sigma_\infty$  だけでなく, 結晶の辺の長さ L にも依存する.

最近, Irisawa et al (1983) は, 正六面体結晶に用い た手法を雪の結晶に拡張して, 基底面, プリズム面のど ちらで最初に不安定性が発するか, またそれを決める条 件は何であるかを求めた. たとえば, 両面の成長速度比 が軸比  $l_c/l_a$  に等しい時は,  $l_c/l_a > 0.9$  ならば 基底面 で,  $l_c/l_a < 0.7$  ならばプリズム面で先に不安定性が発生 することが示された (第1図). その結果は, Gonda・ Koike (1983) の実験と良い一致を示している.

なお,形態不安定の発生後の雪の外形の3次元的な構 造については, Frank (1974, 1982) による定性的な議 論があるだけで,定量的な検討が今後の課題として残さ れている.

また, Komabayashi (1972, 1974) は, 1) 結晶は拡 散過程で成長する, 2) 結晶表面においては 平衡条件が 成立している ( $\sigma_s=0$ ), 3) ただし, 表面エネルギー密 度  $\gamma(\theta)$  の異方性を通じて,結晶表面の局所的な飽和蒸 気圧は,表面の曲率と結晶学的方位  $\theta$  に依存する,とい う条件の下で,雪の形の時間発展を調べている. この理 論で考慮された,  $\gamma(\theta)$  の異方性を通じて,曲率を持っ た表面の飽和蒸気圧が表面の方位にも依存するという効 果は,気相成長の表面 カイネティクスにおいても,今 後,検討する価値のあるものである.ただし,駒林理論 自体は,2~4章で取り上げた気相成長の表面カイネテ ィクスを考慮していないので,むしろ,過冷却水から成 長する氷結晶の形 (Arakawa and Higuchi, 1952) のシ ミュレーションとして直接的に意義があると考える.

#### 7. おわりに

本稿では、雪の結晶の形が、成長条件に応じて敏感に 変化する仕組みについて、結晶表面の構造と微視的な成 長カイネティクス、また、結晶周囲の拡散場の問題に立 戻って考察した.このような、結晶成長の立場から雪結

晶の形を追求する理論研究は、まだ少なく、形の問題が 内在する複雑な本質の一端が理解されたに過ぎない。今 後、雪結晶の成長機構と形に関する実験、理論両面から の研究が相補的に発展することは、雲物理学における基 礎的問題の理解に少なからず寄与するものと考える。

このたび、思いがけずも、雪結晶の成長に関する研究 に対して、実験の権田氏と共に日本気象学会賞を頂きま したことに、深く感謝致します.これまでに行ってきま した理論研究の成果は、多くの方々との議論や共同研究 の中で生まれてきたものであります.特に、北海道大学 小林禎作教授、古川義純氏、東京理科大学 権田武彦氏, 学習院大学 大川章哉教授、入沢寿美氏、東北大学 山本 正樹氏, Braunschweig 工科大学 R. Lacmann 教授に は、数々の有益な御助言や御協力を賜りました.ここに、 心から御礼を申し上げます.

#### 文 献

- Aufm Kampe, H.J., H.K. Weickmann and J.J. Kelly, 1951: The influence of temperature on the shape of ice crystals growing at water saturation, J. Met., 8, 168-174.
- Arakawa, K. and K. Higuchi, 1952: Studies on the freezing of water, J. Fac. Science, Hokkaido Univ, Ser., 2, 4, 201-208.
- Burton, W.K., N. Cabrera and F.C. Frank, 1951: The growth of crystals and structure of their surfaces, Phil. Trans. Roy. Soc., A243, 299-358.
- Chernov, A.A., 1974: Stability of faceted shapes, J. Crystal Growth, 24/25, 11-31.
- De Haan, S.W.H., V.J.A. Meeussen, B.P. Veltman, P. Bennema, C. van Leeuwen and G.H. Gilmer, 1974: Simulation of crystal growth with a special purpose computer, J. Crystal Growth, 24/25, 491-494.
- Fletcher, N.H., 1962: Surface structure of water and ice, Phil. Mag., 7, 255-269.
- \_\_\_\_\_, 1968: Surface structure of water and ice II, Phil. Mag., 18, 1287-1300.
- Frank, F.C., 1949: The influence of dislocations on crystal growth, Disc. Faraday Soc., 5, 48-54.
- Frank, F.C., 1974: Japanese work on snow crystals, J. Crystal Growth, 24/25, 3-5.
- \_\_\_\_\_, 1982: Snow crystals, Contemp. Phys., 23, 3-22.
- 古川義純、山本正樹、黒田登志雄、1984: 偏光解析 法による氷表面の疑似液体層の研究、日本気象学 会昭和59年春季大会予稿集,174.

- Gonda, T. and T. Koike, 1983: Growth mechanisms of single ice crystals growing at low temperature and their morphological stability, J. Crystal Growth, 65, 36-42.
- 権田武彦, 1985: 雪結晶の成長形に関する実験的研 究, 天気, 32, 101-108.
- Hallett, J. and B.J. Mason, 1958: The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour, Proc. Roy. Soc., A247, 440-453.
- Hirth, J.P. and G.M. Pound, 1963: Condensation and evaporation, Pergamon Press, 77-84.
- Hobbs, P.V. and W.D. Scott, 1965: A theoretical study of the variation of ice crystal habit with temperature, J. Geophys. Res., 70, 5025-5034.
- Irisawa, T., T. Kuroda and A. Ookawa, 1983: Growth of hexagonal crystal from vapour and its morphological stability, Presented at 7th Intern. Conf. Crystal Growth in Stuttgart, Sept., to be published in J. Crystal Growth.
- Kuroda, T., T. Irisawa and A. Ookawa, 1977: Growth of polyhedral crystal from solution and its morphological stability, J. Crystal Growth, 42, 41-46.
- \_\_\_\_\_, and R. Lacmann, 1982: Growth kinetics of ice from vapour phase and its growth forms, J. Crystal Groth, 56, 189–205.
- \_\_\_\_\_, 1984: Rate determining processes of growth of ice crystals from the vapour phase, I. Theoretical consideration, J. Meteor. Soc. Japan, 62, 552-562.
- , and T. Gonda, 1984: Rate determining processes of ice crystal from the vapour phase, I. Investigation of surface kinetic process, J. Meteor. Soc. Japan, 62, 563-572.
- 黒田登志雄, 1984 a:雪の結晶成長と成長形,日本 物理学会誌, 39, 772-778.
- ——, 1984b:結晶の成長機構と形―その4―, 固体物理, 19, 683-691.
- \_\_\_\_\_, 1984 c: 結晶は生きている, サイエンス 社.
- Kobayashi, T., 1957: Experiminal researches on the snow crystal habit and growth by means of diffusion cloud chamber, J. Meteor. Soc. Japan, 75 th Ann. Vol., 38-47.
- \_\_\_\_\_, 1961: The growth of snow crystals at low supersaturations, Phil. Mag., 6, 1363-1370.
- Komabayashi, M., 1972: Two dimensional computation of shape of anisotropic ice crystal growing in air, J. Recherches Atm., 6, 307-

328.

- 駒林 誠, 1974: 雪結晶の 形を表現する 微分方程 式,気象研究ノート,123,119-155.
- Lacmann, R. and I.N. Stranski, 1972: The growth of snow crystals, J. Crystal Growth, 13/14 236-240.
- Lamb, D. and W.D. Scott, 1974: The mechanism of ice crystal growth and habit formation, J. Atm. Sci. 31, 570-580.
- Mason, B.J., 1953: The growth of ice crystals in a supercooled water cloud, Quart. J.R. Met. Soc., 79, 104-111.

\_\_\_\_\_, and G.W. Bryant and A.P. Van den

Heuvel, 1963: The growth of habits and surface structure of ice crystals, Phil. Mag., 8, 505-526.

- Nakaya, U., 1951: The formation of ice crystals, Compendium Meteor., Amer. Meteor. Soc. Boston, 207-220.
- ------, 1954: Snow crystals-natural and artificial, Harvard Univ. Press.
- Yamamoto, M., Y. Furukawa and T. Kuroda, 1984: Ellipsometric study of the quasi-liquid layer at the surface of the negative crystal of ice, Presented at 13 th Congr. Intern. Comm., Optics in Sapporo, August.

### 日本気象学会誌 気象 集誌

## 第II輯 第62巻 第5号 1984年10月

山形俊男・林 良一:熱滞の30~50日振動の簡単な診断モデル

J. Egger: 大規模山岐近傍の流れのモデル相互比較

S.J. Chen・L. Dell'Osso:東アジアモンスーン地域の heavy rainfall vortex の数値予報

S.M. Lubis・村上多喜雄:1978~1979年南半球夏季モンスーン期における水蒸気収支

D.L. Cadet • S.H. Houston: 1979年夏期のアフリカ, 東部および中部大西洋上の可降水量

P. Singh • T.S. Verma • N.C. Varshneya:対流雷雲中の電荷生成におけるコロナ空間電荷の役割

T. Husain・M.A. Ukayli・H.U. Khan: 情報理論によるサウジアラビアの気象観測網の評価

#### 要報と質疑

松田佳久:遠心力バランスした傾圧流の安定性に関する予備的研究 岩谷祥美:広帯域連続スペクトルをもつ変動の最大エントロピー法によるスペクトル解析について 木村忠志・梶川正弘:凍雨の一観測

#### 日本気象学会誌 気象 集誌

## 第II輯 第62巻 第6号 1984年12月

和方吉信・瓜生道也:連続成層流体内の強制傾圧波の非線型的振舞 山岬正紀:鉛直シアー流中の対流雲群と"CISK"一偏東風波動とスコールラインへの適用 大河内康正・和方吉信:九州地方の海陸風における地形効果の数値シミュレーション 二宮洸三:夏期北半球の顕著な亜熱帯前線としての梅雨前線の特徴 村上多喜雄・黄 文根:1979年夏における揚子江流域での雨の変動とチベット高原の影響 川村隆一:北太平洋における海面水温アノマリーパターンと北半球冬季の大気循環との関係 上田 博・八木鶴平:北海道釧路市における都市域での海霧の特性

#### 要報と質疑

J.T. Schaefer・C.A. Doswell III: トルネード発生日の総観場の EOF 解析

1985年3月