412 (上層雲)

宇宙から見た気象——No. 45

泡状に見える上層雲*

ひまわり3号

1. はじめに

ロ絵写真に示した泡状とでも言うべき上層雲が GMS で1985年3月11日に東北地方から近畿地方にかけて観測 された. 西日本に見られるような一方向に伸びたやや乱 れた形状のものはしばしば観測されるが, このように規 則的なものは珍しい. これらの雲の実体はどのようなも ので, どのような大気構造の下で発生しているのか若干 の解析をした.

2. 雲の特徴と総観場

泡状の雲はその外観的特徴から積乱雲のような深い対 流雲ではなく、北にふくらんだ前線性の厚い雲域の表層 の現象のように見える。泡状細胞の水平スケール(細胞 間の距離)を画像から求めると約20kmで、冬期季節 風時に対流圏下層に現れるオープンセル(たとえば Agee (1984))等の浅い対流雲と同程度である。衛星で 観測した相当黒体温度から求めた雲頂気圧は210~290 mbであった。30分毎の衛星画像の雲の動きから求めた 衛星風は、近傍の高層観測による200~300mbの風と 10%程度の違いで一致していた。

この時の総観場は、ヒマラヤ北廻りの上層の気圧の谷 が120°E付近にあって約50 km/h で東進しており、ジェ ット気流軸は上層雲域の北縁付近に位置していた(第1 図).この上層雲域の推移は、ヒマラヤ付近の濃密なま とまりのない上層雲(9日21時)が気圧の谷と共に東進 し次第にまとまり、120°E付近でペール状となった(10 日21時).その後東北東進しながら上層雲域の南側で泡 状となり(11日01時)、次第に泡状の領域を北に拡大 し、日本付近で泡状が最も明瞭となった(11日09時).そ の後泡状上層雲は気圧の谷より速い速度で東進し、気

1985年9月

伊藤秀喜*

第1図 ジェット気流軸と中立層上端気圧 (mb), 1985年3月11日09時,●印は第3図の鉛直 断面図解析に使用した高層気象観測点。

圧の 谷から 離れながら 泡状の 形状は 消えた (11 日 18 時).

3. 大気の鉛直構造と雲の鉛直分布

第2図に館野の鉛直プロファイルを示す. 200 mb の 圏界面から 330 mb までは θ_{se} * (飽和 (を仮定した) 偽 相当温位) はほぼ一定 ($\partial \theta_{se}$ */ ∂z =0.1 k/km) で, 飽和 していれば鉛直安定度は中立である. 以後この層を中立 層と呼ぶ.後で示すようにこの層には上層雲があるから 十分に飽和に近いものと見なせる.風について見ると中 立層では鉛直シャーは非常に小さい.

^{*} Hideki Itoh, 気象衛星センター.

第2図 館野における鉛直ブロファイル, 1985年3月11日09時. θ, θse, θse* は各々温位, 偽相当 温位, 飽和偽相当温位を示す. __, __, L_は各々風速は5m/s, 10m/s, 50m/s を示す.

第3図 南北の鉛直断面図,1985年3月11日09時,細実線 (5 k毎) と細破線 (2.5 k 毎) は
θse*, 中太線は風速 (m/s), 太線は圏界面,点彩は中立層, ~~は衛星から求めた雲頂,
→, 世, 横縞は各々パイロットレポートによる霎頂,霎底,雲中を示す. ∧, ∧, ○は各々
極く弱い,または弱い乱気流,極く弱い乱気流,静穏を示す.

▶天気// 32.9.

32

第3図にほぼ140°E線に沿う鉛直断面図を示す. 点彩 で示した中立層はジェット軸の南側の圏界面下に厚さ約 100 mb で,南北約 1,000 km,東西 1,000 km 以上(図 略)にわたって広がっている. このような層は大野・三 浦(1982)によればトランスバースライン出現時のジェッ ト軸近傍にも見られる. 今回の事例では中立層の $\partial \theta_{se}*/\partial z$ の値はジェット軸近傍の札幌で 0.8 [k/km],三沢で 0.7,上層雲のかかっているその他の観測点で 0.3~-0.4であった.

中立層の上端気圧の水平分布(第1図)はゆるやかな ドーム状を示しており,赤外画像の輝度と大まかに対応 している.また中立層での風の鉛直シャー(第3図)は ジェット軸近傍で大きいが泡状上層雲域では小さい.

衛星から求めた雲頂高度(第3図)は中立層上端高度 よりやや低い. これは雲頂で射出率を1としている等の 誤差によるもので,実際には上層雲の雲頂と中立層上端 は一致しているものと見てよいであろう.

航空機のパイロットの報告(第3図,47646付近に記 入した記号の位置関係は正確ではない)の雲頂高度と雲 底高度は,各々中立層上端と下端と一致していた.関東 付近では中立層の下にすき間があって400 mb 付近より 下の高度に前線に対応する雲が地上付近まで続いてい た.また関東北陸以西で390 mb 以下の高度を飛行した 航空機は「雲中」の報告をしている.雲形については中 立層上端の210 mb 付近で網層雲の報告がある.

乱気流に関しては、中立層で極く弱い、または弱い乱 気流、その下に静穏層、さらにその下に極く弱い、また は弱い乱気流を報告している。これらは雲の分布と対応 している.

4. まとめ

(1). 泡状細胞の水平スケールは約 20 km であった.
(2). 泡状上層雲の出現から消滅までの時間は約15時間であった.

(3). 気圧の谷前面のジェット軸の南側の圏界面下に 厚さ約 100 mb の中立層が南北約1,000 km,東西1,000 km 以上にわたって広がっており,上層雲はこの中立層 で発生していた.その上層雲域のうち泡状または変形し た泡状上層雲域ではほぼ湿潤中立であり,ジェット軸近 傍の泡状となっていない上層雲域での鉛直安定度はやや 大きかった.

(4). 泡状上層雲が観測された中立層では極く弱いまたは弱い乱気流が,この中立層の下では雲のない静穏層が観測された.

1985年3月13日にも,本報の例より乱れた形状ではあ るが(水平スケール15~30 km 程度),同種の雲が発生 した. これについても同様の結果が得られた.

文 献

Agee, E.M., 1984 : Observations from space and thermal convection: A Historical perspective. Bull. Amer. Meteor. Soc., 65, 938-949.

大野久男・三浦信男, 1982: 圏界面直下におけるケ ルピンヘルムホルツ波の励起, 天気, 29, 1235-1241.

(486 頁より続く)

間の歩みを振り返って,南極の気象学は最もやりがいの ある分野だと保証できる.」という遺言の如き 前書きの 一節が,実は遺言になってしまった(本年1月急逝さ る). これから著者の挑発に答えようという若き研究者に とっても淋しい限りである.

(大畑哲夫,山内 恭)

(説明は487~489ページ参照)

宇宙から見た気象 泡状に見える上層雲

