大分市における局地風の立体観測*

局地風観測グループ**

要旨

大分市の局地風,特に海陸風を対象とした立体観測を実施した.観測実施日時は,昭和58年8月6日午前 6時から翌8月7日午前7時までの25時間で,係留気球観測3ヵ所,パイパル観測2ヵ所,計5ヵ所の観測 点を10km四方の観測領域内に設置して1時間半毎に高度50m間隔で各種の気象要素を測定し解析を行った.

その結果、本観測中に発生した海陸風は、海風の最盛時にでさえ海風層の厚さが 600 m を超えな い と いった比較的小規模のものであったことが判明した。

更に,海陸風ホドグラフの回転方向が反時計廻りになるケースが多数見出され,その存在する高度が400 m以下に限定されることが明らかになった.このことについて,簡単な線形モデルを用いた理論計算結果との比較を行った.

1. はじめに

海陸の温度差に起因する海陸風循環は,海岸地域の生活環境を決める重要な要因であり,それに伴う風向の日変化は,大気汚染物質の拡散に大きな影響を与えることが知られている(福岡,1975;阿部・楠田,1982) 観測結果によると風向は一般に複雑な日変化を示す (Staley, 1957, 1959; Frizzola and Fisher, 1963; Fosberg and Schroeder, 1966; Weber, 1978).

海陸風の研究においては、風向の複雑な日変化を分か りやすくするために、日変化の中で最も大きな成分であ る1日成分のホドグラフをいわゆる海陸風楕円として示 すことが多い.

海陸風楕円の回転方向に関しては、よく知られている ように Haurwitz (1947) と Schmidt (1947) の研究が ある. 彼等は、いずれも海陸風楕円の時計廻りは地球の 自転の影響によって引き起こされるものであることを理 論的に明らかにした. しかし、実際の現象として反時計

- * Three-dimensional observation of the local wind in Oita City.
- ** 瓜生道也・守田 治(九州大学理学部),角田三郎・野中善政(宮崎大学教育学部),楠田 信・阿部信男(大分高専),山口栄次(福岡航空測候所,現福岡管区気象合).(文責:楠田 信) ——1985年6月7日受領—— ——1985年11月18日受理——

廻りの海陸風楕円の例が観測されている. その有力な原 因の1つとして、Kusuda · Alpert (1983) が明らかに したように、海陸風や山谷風などを引き起こしている2 次元的な気温分布によって生じる気圧傾度力が考えられ る、このことについては、3次元数値モデルによる研究 結果にも示されている (Ookouchi and Wakata, 1984). 他方、観測結果の解析から、海陸風楕円の反時計廻りと 日平均風の関係も指摘されている(白木, 1984 a, 1984 b). しかし,現在までのところ,任意の観測点で観測 された海陸風楕円の回転方向を説明できるところまで研 究が進んでいるとは言えない、その理由として、大規模 な観測例(木村, 1984) はあるが,数 km 間隔で観測点 を設ける様な密度の濃い3次元的観測網の下で海陸風観 測を実施することが困難なことが挙げられる.更に, Neumann (1977) と Kusuda · Alpert (1983) が示した 風向の時間変化の式に拠ると、現象面から風向変化ある いは海陸風楕円の回転方向の原因を解明するためには気 温と気圧の値を高い精度で観測することが 必要 である が,実際には大変困難なことである.

本研究では、海陸風の現象をできるだけ克明に把握で きるように、大分市内に約10km四方の観測領域を設 け、係留気球とパイバルによって立体観測を行った。更 に、そのデータ解析で得られた海陸風楕円の垂直分布と 簡単な線形モデルによる理論結果との比較も行った。

1986年2月

第1図 地上天気図。 昭和58年8月6日15時。

第2図 大分市の地形及び観測点の分布図.

2. 観測実施内容

観測実施日時は,昭和58年8月6日午前6時から,翌 7日の午前7時までである。当日は,近年になく真夏日 の続いた最後の日で,天候は下り坂に向かい海陸風観測 に最適とは言えなかったが,幸い降雨もなく25時間観測 を実施することができた。第1図に当日の15時における 地上天気図を示す.ここに示されるように九州上空を気 圧の谷が通過した為,8月6日21時から24時にかけて強 風が吹き一部欠測が出る原因となった.

第2図は大分市の地形図及び観測点の分布図で、細い 実線は標高50mの等高線である. 観測点は、係留気球 が海岸に1ヵ所(豊海)、海岸から約5kmの内陸部に 海岸線にほぼ平行に4km隔てて2ヵ所(高専・芸短大) の計3ヵ所、パイバルは2ヵ所(高崎・ふじケ丘)で、 他に気象台を含む地上観測点が4ヵ所である. 係留気球 とパイバルの観測点を、それぞれが不等辺四角形を成す

ように設置し、そのほぼ中央に係留気球の観測点を設置 した.係留気球は、最近各地でよく使用されている AIR 社製のものを用い、気圧・気温・湿度・風向・風速の5 要素を測定した.ただし、豊海についてはセンサー故障 のため、気温・湿度の測定はできなかった.測定高度は 地上から 500 m まで 50 m 間隔の11点で、平均して約4 分間各点に気球を停留させ安定した観測値を得るように した.各データは、まとめて 25 秒毎に FM 電波で地上 に送信される.パイバルは、視程に合わせて上昇速度が 毎分 100 m と 200 m のものを使い分け、30 秒間隔で測 風経緯儀によりその位置を 測 量 した.観測は、係留気 球・パイバルとも1時間30分毎に行った.

3. 観測結果

観測データの整理にあたっては、天候及び電波の状態 によって欠測の時刻が生じたことと、係留気球による地 上から高度 500 m までの観測に約1時間を要し、各高 度における観測時刻にずれを生じたことなどのため、観 測点毎に全ての観測データを時間毎及び高度毎に線形補 間を行った.ただし、パイバル観測については 600 m 以上の高度で発生した欠測は、その高度に対応する係留 気球の観測データが無く、従って後の解析に必要ないこ とと補間精度の悪化を避けるために図に空白のままで示 すことにした.係留気球の高度は地上と所定高度の気圧 差からと、セオドライト2台による三角測量の両方で求 めた、両者を比較した結果を第3図に示す.この図から

▶天気// 33. 2.

第4図 水平風ベクトルの時間-高度分布図.

分かるように,両者の高度差は各高度に対して数%以内 であったので,データ整理の都合上係留気球の高度は, 気圧から求めたものを使用した.

第4 図は,係留気球観測から求めた水平風ベクトルの 時間-高度分布図で,上から順に豊海・芸短大・高専の ものを示す.各図とも,任意の時刻及び高度における水 平風の風向(西風と南風を正とする)を矢印の向きで,

第5図 水平風ベクトルの時間-高度分布図.

風速を矢印の長さで表したものである.風速のスケール は図の右下に示してある.第2図に示した地形図から分 かるように北風が海風で,南風が陸風である.図中破線で 囲んだ部分は欠測が生じた時刻と高度を表す.太い実線 で囲んだ部分は海風域を示す.これらの図から平地に位 置する豊海と芸短大における地上から高度150mまで の凪は同時刻で,8時半と20時であったことが分かる. 尚,この凪の時刻は地上風データの解析結果(楠田・阿 部,1982)とほぼ一致する.

第5図は、ふじケ丘でのパイバル観測による結果を示 してある。図の書き方は、第4図と同じである。ここに 示してないが、高崎における観測結果も同様なものが得 られている。

以上の結果から,観測日に吹いた海風の最大値は約 6 m/s で海風層の厚さは約 600 m であることが分かる. 海風層の厚さは,地形や気象条件で異なると考えられる が,平地が狭く入り組んだ地形ということで大分市と 地形条件が類似する瀬戸内海沿岸での観測例(岸田, 1974;佐橋,1978)と比較すると,約半分の厚さであ る.

一方,楠田・阿部(1982)の解析によって大分市の地 上風の特徴として,風向が反時計廻りに日変化する観測 点の多いことが明らかにされていた.今回の観測におい ても,陸風時に擾乱の通過に因る影響で強風が吹いたた めホドグラフ形状は複雑になったが,昼間の風向は反時 計廻りに変化していることが分かる.

1986年2月

第6図 高度100mにおけるホドグラフ.

今回の観測で得られた風の日変化の特徴をよく表した ホドグラフの例を第6図に示す.これらは,芸短大と高 専における高度100mでのもので,各時刻の水平風ベ クトルの先端を結んで示し,調和解析から得られた1日 成分を楕円で表している.実線で描かれた楕円は反時計 廻り,破線は時計廻りを表し,+印は日平均風ベクト ルの先端を示している.地上風についての 楠田・阿部 (1982)の解析で明らかにされたと同様に,約1m/sの 弱い日平均北西風が示されている.

第7図は、係留気球とパイバルの観測データを基にし

第8図 気温の時間-高度分布図.

て,豊海・高崎・ふじヶ丘・高専を結ぶ四角形内で求め た水平発散量の時間-高度分布図である。白地の部分は 収束域,ハッチは発散域を示す。今回の観測では,海陸 風に伴う特徴的な収束と発散のパターンが得られてない。その理由は,観測網のスケールが小さい為に,地形

*天気// 33.2.

左から芸短大と高専の気温差の1日成 分の位相,両地点の日平均気温差及び 1日成分の振幅を示す。

の影響等を受けた局地的な分布が示されたこと,あるい はこの観測日がシノプティックな場の影響を大きく受け たためと考えられる.

第8 図は,東西方向の海岸線とほぼ平行な線上に位置 する芸短大と高専における気温の時間別高度分布を示 す.実線は芸短大,破線は高専での等温線を示し,数字 は摂氏温度を表す.後で示す様に細かな点は別として, 高専と芸短大の気温分布の形状は,両観測点の海抜高度 の差だけずらせば両者がほぼ一致する程よく似ている. 言い換えれば,海陸風循環によって形成される数百mの 高度までの気温分布は,その地点での地面からの高度で 決定されると言えよう.更に,夜間の逆転層が150 m 附近の高度に現れている.逆転層の出現時刻は,海抜高 度が高い高専の方が平地の芸短大より早いことが分か る.尚,両者の逆転層の地面からの高度は,観測点の海 抜高度差を考慮するとほぼ同じ高度になる.

第9図は,更に詳細な検討をするために,日変化する 気温差(芸短大-高専)を高度毎に調和解析した結果を 示したものである.図には,日平均気温差と1日成分の 振幅と位相の垂直分布を各々実線で示してある.日平均 気温差については高度100mから550mまでの平均値 を,位相は1次関数,振幅は指数関数を仮定してそれぞ れ最小2乗法で求めたものを一点鎖線で示してある.第 8図で述べた同一高度での海岸線に平行な方向の気温差 が特に日平均気温差の垂直分布に顕著に示されている. 即ち,200m以上の高度で,相対的に河川地域(芸短 大)に低温,そして丘陵地域(高専)に高温が定常的に 存在している.線形理論(Arakawa and Utsugi, 1937)

によって,海陸の最大温度差1°C につき1.6 m/s の地 上最大風速が対応することが示されているが,大分市に おいては,既に楠田・阿部(1982)の解析で明らかにさ れたように海陸間に定常的な温度差が存在し,更に,陸 上で東西方向に定常的に存在するこの日平均気温差(約 0.4°C)とによって,第6図に示された約1.0 m/s の日 平均北西風とが対応すると考えられる.

一方,海陸風楕円の回転方向に影響すると考えられる 海岸に平行な方向の気温差の1日成分についてみると, 振幅は高度 200 m まで急激に 減 衰 し,200 m 以上では

1986年2月

57

第10図b 海陸風楕円の高度別分布図(芸短大). 以下第10図 a と同じ.

緩やかに減衰している. 位相は高度と共に次第に遅れて いき,高度100mと500mでの位相差は時間で約6時 間に達する. 日平均気温差と1日成分の振幅・位相の垂 直分布について共通な特徴は,高度200mを境にその 上下の層で変化の傾向がかなり違うことである. これ は,第8図で述べた夜間に発生する逆転層の影響による ものであると考えられる.

海陸風は,海上と陸上の気温差によって生じるもので あることは言うまでもないが,第8図と第9図に示され たように,実際には,陸上で海岸線に平行な方向に気温

第10図 c 海陸風楕円の高度別分布図(高専). 以下第10図 aと同じ。

差が存在している.従って,同一高度でのその気温差は 海岸線に平行な方向の循環を発生させる原因になるもの と考えられる.その結果,Kusuda・Alpert (1983)に よって明らかにされたように,海陸の温度差によって生 じる熱的強制力に加えて,陸上の海岸線に平行な方向の 熱的強制力が存在し,両者の振幅及び位相の違いが,風 向を複雑に日変化させていると考えられる.

第10図 a, b, cは, 係留気球の各観測点における海陸風楕円の垂直分布を示す.実線は反時計廻り,破線は時計廻りを表す.反時計廻りの海陸風楕円の出現は,

♥天気∥ 33. 2.

400 m 以下の高度に限定されている.更に,観測点相互 の距離が 5 km 程度であるにもかかわらず,海陸風楕円 の垂直分布は 3 カ所共全く違った特徴を示している.こ れらのことは,前述のように地形分布に起因して低層に 存在する局地的な気象条件に影響されたものであると言 えよう.

4. 線形計算結果

ここでは,第10図に示した海陸風楕円の垂直分布と Haurwitz (1947)のモデルを拡張した簡単な線形モデ ルで計算した結果とを比較する.

運動方程式は次のとおりである.

$$\frac{\partial u}{\partial t} - fv = \nu \frac{\partial^2 u}{\partial z^2} + F_1(z, t)$$

$$\frac{\partial v}{\partial t} + fu = \nu \frac{\partial^2 v}{\partial z^2} + F_2(z, t)$$
(1)

ここで、 x 軸は海岸線に平行、 y 軸は海岸線に垂直に海 に向かう方向を正にとった座標で、u、v はそれぞれの 風速成分である。その他の文字は、通常用いられるもの と同じであるので説明を省略する。ただし、 $F_1 \ge F_2$ は 次式で与えられる x と y 方向の熱的強制力である。

$$F_1 = M_1 e^{-k_1 z} \sin(\omega t + \theta_1)$$

$$F_2 = M_2 e^{-k_2 z} \sin(\omega t + \theta_2)$$
(2)

ここで, M_1 , M_2 及び θ_1 , θ_2 は,それぞれ熱的強制力の振幅と初期位相, k_1 と k_2 は振幅の高度減衰定数である.

初期条件及び境界条件をそれぞれ次の様に設定する.

$$\begin{array}{c} u(z,0) = v(z,0) = 0\\ u(0,t) = v(0,t) = 0\\ u(h,t) = v(h,t) = 0 \end{array} \right\}$$
(3)

(3)の各条件を満たす(1)の方程式の解析解は, ラ プラス変換を利用して容易に求めることができ、次の様 に複素形式で与えられる.

$$V(z,t) = u + iv$$

= $\frac{1}{h} \sum_{n=1}^{\infty} \{E_{1n}e^{i\omega t} + E_{2n}e^{-i\omega t} - E_{3n}e^{-(vc_n^2 + if)t}\} \sin c_n z.$ (4)

ここで,

$$c_n = \frac{n\pi}{h},$$

$$E_{1n} = \frac{-iX_{1n}e^{i\theta_1} + X_{2n}e^{i\theta_2}}{\nu c_n^2 + i(f+\omega)},$$

1986年2月

$$E_{2n} = \frac{i X_{1n} e^{-i\theta_1} - X_{2n} e^{-i\theta_2}}{\nu c_n^2 + i(f - \omega)},$$

$$E_{3n} = E_{1n} + E_{2n},$$

$$X_{mn} = M_m \frac{c_n \{1 - (-1)^n e^{-k_m h}\}}{c_n^2 + k_m^2}$$

である.

ここに示した解析解(4)から数値結果を得るために は,(2)式中の6コのパラメータを与えなければならない.

熱的強制力の初期位相を考える上で、大分市の様に東 西方向の海岸線に対して南北方向に丘陵が突き出した地 形では、地形を無視することは出来ない、斜面の傾きに も因るが Gleeson (1951) の研究に示されているよう に、東側の斜面温度は日の出後早い時刻に最大に達する と考えられる、逆に、太陽が南中した後での東側斜面の 放射による冷却も時間的に早くなる.従って,高専が位 置する丘陵を中心にして8時頃に東側の平地と斜面の気 温差が最大になると仮定して、x 方向の初期位相を θ_1 = 150°, 西側では θ₁=330° とする. これらの位相 値 は, 第9図に示した地上付近の位相にほぼ一致するものであ る. Y 方向の初期位相は、地面に接した大気の温度が最 大になる午後2時頃に海と陸の気温差が最大になると仮 定して $\theta_2 = 60^\circ$ を与える、熱的強制力の振幅は $M_1 = M_2$ を仮定し, Haurwitz (1947) と同じ 2.4×10⁻⁴m/s を用 いる.熱的強制力の振幅の高度減衰定数は、x方向につ いては第9図に示した観測結果から得られた減衰定数に 近い (300 m)⁻¹ を, y方向については Schmidt (1947) の用いた (1000 m)⁻¹ を与える. 渦粘性係数は Gleeson (1953) と Ookouchi · Wakata (1984) が用いた値に近 い 5 m²/s を与えることにする.

以上の各パラメータに対して t = 0からスタートして 十分時間が経過した状態で得られた数値 結果 を第11図 a, bに示す.第11図 aは丘陵の東側, bは西側におけ るものに相当する.この図から,反時計廻りのホドグラ フは丘陵の東側にのみ現れ,西側には全く出現しないこ とが分かる.これは,Kusuda and Alpert (1983) が示 した様に,海陸風楕円の回転方向が 2 次元熱的強制力の 位相差に依存することに因る.

観測結果(第10図)と数値結果(第11図)を比較する と、反時計廻りの海陸風楕円が低高度に出現しているこ と、更に海陸風楕円の傾きが高度と共にあまり変化しな い等の点で両者の特徴がよく一致する。両者の一致は、 高専で特に顕著に示される。更に、高専からみて西方に 位置する芸短大で反時計廻りのホドグラフが得られない

59

第11図 a 線形モデルによる海陸風楕円の高度 別分布図(東側斜面). 黒丸は0時 の風ベクトルの先端を示す.以下第 10図 aと同じ.

こととホドグラフの離心率が高専に比べて小さいことも 一致する.

5. まとめ

今回実施した立体観測で,観測日の海陸風について次 のことが分かった.

地上から高度 150 m までの凪はほぼ同時刻で 8 時半 と20時である.これは,地上風データの 解析 結果(楠 田・阿部,1982)と一致する.海風の最盛時は 13 時頃 で,最大風速は約6 m/s である.海風層の厚さは最盛時

第11図b 線形モデルによる海陸風楕円の高度 別分布図(西側斜面). 以下第10図 aと同じ。

でも 600 m 以下で, 瀬戸内海沿岸での 報 告 例(岸田, 1974; 佐橋, 1978) に比べて半分の厚さで, 垂直スケー ルは非常に小さいことが分かった.

気温の垂直分布は、今回観測した最高高度600m以下では地面からの高度でほぼ決定される。その結果、陸上の地形によって海岸線に平行な方向の気温傾度が常に存在し、海陸風の垂直スケールが小さいことと合わさって第6図に示したように風向が複雑に日変化するものと考えられる。更に、今回の観測で得られた反時計廻りの海陸風楕円が出現する高度は、400m以下に限定され、

◎天気// 33. 2.

20

数 km 離れた観測点で海陸風楕円の垂直分布が全く異なっていた。尚,観測で得られた海陸風楕円の回転方向と 形状の垂直分布を簡単な線形計算結果と比較 した と こ ろ,両者の特徴はよく一致した.

謝 辞

本観測にあたり,資料提供及び観測機器の検定に協力 していただいた大分地方気象台に感謝の意を表します. 尚,本研究は,昭和58年度科学研究費特別研究「環境科 学」による「海陸風に伴う風向日変化と物質拡散に関す る研究」の一環としてなされた観測データを基にしてま とめたものである.

文 献

- Arakawa, H. and M. Utsugi, 1937: Theoretical investigation on land and sea breezes, Geophys. Mag. Tokyo, 11, 97-104.
- 阿部信男,楠田 信,1982:大分市における夏季の 海陸風と二酸化硫黄濃度分布の関係,天気,29, 87-90.
- Fosberg, M.A. and M.J. Schroeder, 1966: Marine air penetration in central California, J. Appl. Meteor., 5, 573-589.
- Frizzola, J.A. and E.L. Fisher, 1963: A Series of sea breeze observations in the New York City area, J. Appl. Meteor., 2, 722–739.
- 福岡三郎, 1975: 大気汚染物質の分布と気象条件との関係, 気象研究ノート, No. 127, 364-385.
- Gleeson, T.A., 1951: On the theory of cross-valley winds arising from differential heating of the slopes, J. Meteor., 8, 398-405.
- ——, 1953: Effects of various factors on valley winds, J. Meteor., 10, 262–269.

- Haurwitz, B., 1947: Comments on the seabreeze circulation, J. Meteor. 4, 1-8.
- 木村龍治, 1984: 内陸城における大気汚染の動態,
- 文部省科学研究費 特 別 研 究「環境科学」研究広 報, 28, 49-52.
- 岸田和博, 1974: 広島における海陸風循環の経月特 性, 天気, 21, 579-586.
- 楠田 信,阿部信男,1982:大分市の夏季の海陸 風,天気,29,81-86.
- Kusuda, M. and P. Alpert, 1983: Anti-clockwise rotation of the wind hodograph, Part I: Theoretical study, J. Atmos. Sci., 40, 487-499.
- Neumann, J., 1977: On the rotation rate of the direction of sea and land breezes, J. Atmos. Sci., 34, 1913-1917.
- Ookouchi, Y. and Y. Wakata, 1984: Numerical simulation for the topographical effect on the sea-land breeze in the Kyushu island, J. Meteor. Soc. Japan, 62, 864-879.
- 佐藤 謙, 1978: 岡山周辺の海陸風 に つ い て, 天 気, 25, 357-363.
- Schmidt, F.H., 1947: An elementary theory of the land- and sea-breeze circulation, J. Meteor., 4, 9-15.
- 白木正規, 1984 a: 大気境界層の風の日変化と日平 均風(I)--釧路の解析例--, 天気, 31, 243-250.
- Staley, D.O., 1957: The low-level sea breeze of northwest Washington, J. Meteor., 14, 458-470.
 ——, 1959: Some observations of surfacewind oscillations in a heated basin, J. Meteor., 16, 364-370.
- Weber, M.R., 1978: Average diuranal wind in southwest lower Michigan, J. Appl. Meteor., 19, 1182-1189.