

天

気

1987年8月 Vol. 34, No. 8

塩谷正雄**

地物・小地形と風*

1. はしがき

地表付近の風は地形によって大きな影響を受けること はよく知られており,多数の著書・論文(Yoshino, 1975・塩谷・1981,ほか)がある.列車・自動車の暴風 時の事故は室戸台風とのきの瀬田川橋梁以来,多く橋の 上で発生している.光田・林(1979)は風力発電の参考 として,気象官署の風の統計をとっているが,大島・与 那国島・三宅島などの島,室戸岬・御前崎・石廊崎など の岬,伊吹山・剣山・筑波山などの山で風が強くなって いる.また,わが国では未観測地点での強風の推定に, 地形因子を用いた方法がよく行われるが,高度差,海岸 度,開放度といった因子が風速と正の相関を示すことが 知られている.要するに,周囲より高く,周りが開けた 地点,海岸,川筋などで風が強くなっている.

地形の規模が大きいと,風には熱の影響が無視できない.また,たとえ規模が小さくとも,風速が弱くなると 熱が影響を及ぼしてくるが,本文では強風で中立状態に 限ることとする.従って,本文の適用範囲としては,風 力エネルギーの利用,構造物の耐風性ということになる.

地物として代表的なものは建物であるが,建物周辺の 気流に関する紹介文は多いので省くことにし,昔から調 査が行われ,最近になって,建物周辺の風を緩和する手 段として再び研究されている防風柵だけを本文では取り 上げることにする.

* The wind flow around porous fences and small topographies.

** Masao Shiotani, 日本大学生産工学部.

地物・小地形と風に関する研究のアプローチとして, 理論,風洞実験,現地観測がある.理論についてはJackson・Hunt (1975)(以下 JH 理論という) ほか幾多 の方法があり,最近この分野の進歩にめざましいものが あるが,本文では触れないこととし,風洞実験,現地実 験について述べる.

風工学シンポジウム(1回~8回), 耐風設計に関す る文献資料(日本鋼構造協会,1983),第8回風工学国際 会議報告書(1983)から,柵・小地形と風の文献を拾 って分類してみると第1表のようになる.たまたま文献 数は国内,国外とも23で等しい.項目別に比較すると, 柵はほぼ同数である.岡・小山・斜面・崖のような単純 地形は外国が多い.海峡・島は日本が多いが,これは本 州・四国連絡橋ルートと離島の飛行場予定地の調査であ る.理論は外国で圧倒的に多い.風洞実験は日本で多い. 現地実験はほぼ同数になっているが,日本では風洞実験 の一部の現地検証も含まれ,内容からすると外国のほう が勝っている.解析は日本では地形因子によるものだけ である.全般的に見ると,外国では学問的な研究が多く, 日本では実用的な研究が多い.

地形の上の風速の変化を表す場合,増速比または風速 比として,多くの場合,①地形上任意の位置 x で地面か らの高さ Δz の風速 $U(x, \Delta z)$ と同じ高さの基準点の 風速 $U_R(\Delta z)$ の比を用いるか,② 基準高度 Δz_R の風速 $U_R(\Delta z_R)$ との比を用いるのが普通である.しかし,以 前には③基準水平面からの高さを z とおいて,地形上 の風速 U(x, z) と基準点の風速 $U_R(z)$ の比を用いた ことがある.

地物・小地形と風

第1表 地物・小地形の分類と最近の文献数

	地 物 (柵)	岡 小山・斜面	海峡島	複雑地形	地形因子	理論	 風 洞	験 現 地	解析
(外国) 23	5	11	1	7	0	7	4	14	1
 (日本) 23	4	5	7	4	4	2	10	12	14

(a) vertical distribution

第1図 透風性柵の周りの気流(図中↔↓印は乱れを表す).

2. 防風柵

2.1 柵の周りの気流,乱流状態

柵は、金網・合繊ネット・板(金属製または木製)からできているもの、松・杉・その他の庭園樹の列から成るものがあり、風下側の領域で風を弱め、土壌侵食の防止、飛砂・吹雪の防止、人間・動物・植物を保護する目的で利用される、透風性があるように造られ、空隙率が20~50%が適当とされている。

柵の周りの気流の模式図を第1図に示す.風上側から の流れは柵に近づくと減速を受け、一部は柵を通り抜け るが、他は柵を越えていく.柵の上端で流れは剝離し、 剝離線の上では収束を受けて増速域となり、下では渦領 域となり乱れが大きい.下流に行くにつれて、上層の風 速が大きく乱れの小さい部分と、下層の風速の小さく乱 れの大きい部分が混合するために、速度プロフィルは風 上側に近づいていく.Bradley・Mulhearn (1983) は高 さ 1.2m,空隙率50%の板柵周りの風速鉛直分布を第2 図に示した.図では破線により基準点の分布 U_R を示して いる.速度の増加分 $AU(=U-U_R)$ は柵のすぐ風下で 負の最大となり、下流に行くにつれて減少する様子がわ かる.混合域内では AU の大きさは 1/x にほぼ比例し ている.同じ柵について,乱流エネルギーおよびシヤー 応力の鉛直分布を,Finnigan・Bradley (1983) は第3 図のように表した.これらは柵後方の渦領域で発生する が、シャー応力は渦領域に限られているのに、エネルギ ーは柵高の4倍にまで及んでいる.風速,エネルギー, 応力とも柵高の40倍風下になっても上流の値に戻らず、 柵の影響がなかなか消えないことを表している.

▶天気// 34. 8.

Wilson (1985) はいろいろな形の乱流モデルを用い て、透風性柵の周りの流れの数値解法を試み、実測値と 比較した. 解法において、柵の特性を表すパラメータと して、柵の遮風係数 k_r を用いた. k_r は柵の材料によ って風路を遮断したとき、柵の風上、風下側の圧力差 dpと、透過風速 U_l から、 $k_r = 4p/\rho U_l^2$ (ただし、 ρ は空気密度) により求められたものである. 利用されて いる柵は $k_r = =0.5 \sim 5$ であり、例えば鋭角の断面をも つ材料で造った空隙率50%の板柵では、 k_r は2くらい である. 渦領域 (x/h=4.2)、混合域 (x/h=15) にお ける速度プロフィルの計算値は、実測値とよく合ってい る. 高さ z/h=0.6 における風速の水平分布の計算例を 第4 図に示す. 柵のすぐ風下側では風速は最小となり、 その大きさは k_r が大きいほど減少している. 第5 図に

平距離)を示す。

は風速の最小値と k_r の関係を分割風速比 $4U/U_R$ で表 している. 地表面の粗度長 z_0 の影響は小さい. なお, 柵の単位長当りの抵抗係数 $C_D(=D/\rho U_R(h)^2 \cdot h: tcti$ $し D は単位長当たりの抵抗) とすると, <math>C_D \ge k_r \ge$ は関係があり, $k_r=0.5$ では, $C_D=0.2$, $k_r=5$ では $C_D=$ 0.45となっている.

2.2 国鉄における柵の研究例

国鉄においては開業以来,数10mの幅の林や, 萱 簀 (かやのすのこ)・むしろを用いた柵により吹雪を防止し ていたが,1960年代になって,新材料を用いた柵や生垣 式の樹列の防雪効果に関する調査がなされた.2つの例 を下に記す.

(1) 2つの材料の柵

秦野ほか(1966)は種々の材料の柵を用いて現地調査 を行ったが、そのうち金網と寒冷紗を用いた柵 につい て、周りの風速減少の様子を基準点における高さ2.5 m の風速との比の等値線で表し、第6図のように示した. 防雪用の柵では、使用期間中に下部が雪に埋まるのを遅 らせるために, 地面上 60 cm を 空けているので, 下方 は等値線の形は複雑である.2つの柵の空隙率はほとん ど等しく0.4位の値であるが、最小風速の現われる位置 は寒冷紗では0~3 hであるが、金網では2~7 hとな り,また最小風速の値は前者の0.2に対し、後者は0.3と なっている. 遮風係数 kr を求めると寒冷紗の1.7 に対 し、金網では0.85となり、前者では風を透過し難いこと がわかる. 現地においては寒冷紗は雪が付着し易いため に空隙率はさらに小さくなっているものと思われるが、 空隙率で柵の効果の良否を判断するのは、同材料、同じ 組み方の場合しか適用できないことになる.

第3図 柵の周りの乱流エネルギー, シャー応力の鉛直分布 (Finnigan and Bradley, 1983)

493

1987年8月

第4図 柵の周りの風速水平分布と遮風係数の関係 (計算値)(Wilson, 1985)

第5図 柵の遮風係数と最大の風速減少率との関係 (計算値)(Wilson, 1985).

(2) 樹列柵

鉄道技研防災研究室ほか(1960)は、高さ2.5 m の杉 の間伐材を1~3列に生垣状に仕立てて、吹雪を阻止す る効果を調べた.第7図では高さ1mでの風速水平分布 を風速比で示している.杉は地面に接するところまで枝 葉を残してあるために防風効果は大きく、風下側の渦領 域の部分では、風速比が0.2~0.3となっている.風速 の測定日が同一でなく、風向きも異なるので樹列数と風 速減少の関係は明らかではない.別に、同形の樹列によ る風洞内の模型実験によると、樹列が3列から1例にな るにつれて、最小風速比が次第に大きくなり、その領域 が次第に柵から遠ざかっている.あたかも枝葉の間を通 り抜けた風が、渦領域を下流に押し流しているようにみ える.

2.3 その他の研究例

最近になって建物周辺の強風を軽減する目的で,柵を 建てて風を弱め,建物に出入する歩行者の危険を防止

第7図 杉樹列柵の風速水平分布と樹列数との関係 (鉄研防災研はか, 1960).

し、不快感を和らげる試みがなされた. 建物周りの強風 域はそう広いものでもないし、建物に出入の際の便利さ も考えて. 柵はそう延長を大きくすることも、主風向に 直角に建てることもできない. 従って,ほとんどの2次 元柵と考えられる農業・道路・鉄道の場合と異なり,市 街地に建てられた柵は,両端から廻り込む気流の影響も 考慮しなければならない.

三上ほか(1980)は常緑針葉樹・常緑広葉樹・落葉樹 を1~2列に配置した柵および空隙率が0~0.8のネッ ト柵により,現地実験,風洞実験を行った.風洞実験で は現地実験よりも風速の逓減が大きく,柵の効果が大き いようになった. 深尾ほか(1980)は空隙率が0.75・ 0.56と大きい柵で風洞実験を行い,柵は平均風速を弱め るが,瞬間風速はあまり弱めないとした.村上ほか

*天気//34.8.

3. 単純地形と風-岡・小山・斜面・崖

3.1 孤立した小地形周りの気流の性質

山の頂上や崖の上では、風は平地より強くなることは 経験されており、このような場所に建物などを造る場合 には、設計風速を平地より大きくとるように各国とも指 導がなされている. 傾斜の大きくない2次元の岡の周り の流れについて、さきに指摘した JH 理論による計算結 果を参照すると、第8図に示すようになる (Hunt and Simpson, 1982)、岡に接する気層内ではシャー応力が大 きく、上に行くにつれて減少している. この範囲を内層 といい、厚さを1で表す. その上の気層内ではシャー応 力が小さく、これを無視してポテンシャル流として解を 求めてもよい. これを外層という. 風速の増加分 4Uは岡の頂上では正となるが,風下側では剝離を生じ風速 が減少し, 4U は負になる. l_z は岡の影響範囲(後流 の厚さ)を表している. 乱れ速度は平地では $\sigma_u > \sigma_w$ と なっているが,岡の頂上に近づくにつれて, σ_u は減少 し, σ_w は増加し,頂上では $\sigma_u < \sigma_w$ となる. 岡の後流内 では σ_u , σ_w とも増加している.

2次元の岡の幅及び高さを表す代表長さをそれぞれ、 *L*, h (第8図参照),水平位置Xにおける地上高さを Zとし、岡の形状で決る関数を σ (x, z)とすると、外 層における速度の増加分 ΔU (x, z) は次の式で与えら れる、

 $\Delta U(x, z) = \frac{h}{L} \sigma(x, z) u_0(L) \cdots (1)$

ただし、 $u_0(L)$ は平地における 風速で、 粗度長を z_0 とすると、 $u_0(L) = (U_*/k)ln(L/z_0)$ で与えられる. ここで は U_* 摩擦速度、k はカルマン定数である. 内層の厚さ lは $l \cdot ln(l/z_0) = 4 k^2 L$ の関係式で与えられる.

JH 理論は他の理論と同様に,風上斜面から頂上まで の流れについては実測とよく合っているが,風下側で剝 離が発生する場合は,風速の予測がうまくいかない. 剝 離を起こす条件としては,斜面傾斜と粗度が関係してく る. 粗度が大きくなると,地面付近では速度が減少して

1987年8月

剝離を引き起こすことになる.

岡の上の気流の乱れを論ずる場合に、乱渦の岡を通過 する時間 T と、乱渦の寿命時間 T_L が問題となる.内 層に相当する範囲では $T_L \ll T$ の関係にあり、乱流エネ ルギーの発生と散逸が岡の各部分でつり合っている (local equilibrium). 外層に相当する部分では $T_L \gg T$ の 関係にあり、乱渦はエネルギーを失うことなく、収束に より流れの方向に伸長する (rapid distortion). このよ うな考えから、頂上における乱流速度の計算や、スペク トルの特徴を説明する試みがある.

3.2 2次元の地形-岡・斜面・盛土・崖

Bowen (1979) は斜面や崖の周りの風速・乱れについ て,風洞及び現地実験を行った.第9図は,高さh= 11.56m の崖に対しやや斜めに66度の角度で風が当たっ た場合の現地実験結果を,風洞実験結果と比較してい る.両者はほぼ一致しているが,崖の頂上で気流の剝離 があるので,崖の上4hの地点では風速も乱れもあまり よく合っていない.塩谷・林田 (1965) は新幹線盛土周 りの風速について,現地実験と風洞実験を行った.盛土 高さh=7.85m,傾斜は約30度である.実験結果は第10 図のように風速比の等値線で示している.風洞と現地で は風速比の表し方が異なるが,気流全体の模様,最大風 速比の位置・大きさは大体合っている.気流は風上側の 法肩で剝離しているので,風下側の渦領域では実物と模 型の間に差が見られる.

Britter et al. (1981) は風洞内で、ベル型をした 2次 元の岡の周りの風速及び乱れの測定を行った。岡の最大

第10図 鉄道用盛土周りの風速の等値線図,上は現 地実験,下は風洞実験(塩谷・林田,1963).

傾斜は0.26であり,境界層厚さ $\delta = 10h$,粗度長 $z_0 = 0.02$ hとした.頂上より風上側では,風速の実測値と計算値 はよく合っていた.しかし,風下側では剝離を生じ,7 hの点で再付着をしていたので,風下では実測値と計算 値は合っていない.風洞実験で樹木のあるような粗面を 作る場合には,内層厚さlは粗度物体の寸法とほぼ同じ になり,測定は外層内に限られる.風速の水平分布を第 11図の上の図に示す.頂上(x=0)では面の近くほど増 速の度合が大きく,風下側では減少していることがわか る.粗な平面に滑な岡を置いた場合は,頂上における増 速は更に著しく,風下側の剝離を抑制していることが認 められた.

乱流速度 σ_u の水平分布を第11図の下の図に示す. 増 速の大きい頂上では σ_u は風上側より小さくなり, 理論 から求められる傾向と合っている. 風下側は地面近くは 渦領域となり, σ_u は急速に増加している.

Baker (1985) は鉄道盛土の周りの風速及び乱れの測 定を行った.盛土は高さ8mと10m,傾斜は25度~35 度,上部の幅は10mである.盛土上の最大風速比は, $\Delta z/h=0.375$ では1.7, $\Delta z/h=0.125$ では1.8となる. σu は盛土上と基準点との比は1.15となり,盛土の上のほう が大きい.風向が盛土に斜めになっている場合,増速を 受けるのは盛土に直角な成分だけである.最大風速比と 風向,高さとの関係をそれぞれ第12,13図に示す.第13 図中の破線は理論計算の結果を示している.

3.3 3次元の岡

*天気/ 34. 8.

第11図 ペル型岡の周りの風速の水平分布・乱れ速 度と高さとの関係 (Britter et al., 1981).

第12図 鉄道盛土上の風速比と風向との関係, Zは 地上からの高さを表す (Baker, 1985).

Bradley (1980) は h が170m, L が約600m, 傾斜が 約20度の円形の岡の上の風速及び乱れの測定を行った. 頂上0.2 h のところに風速の最大部(ジェット)が見ら れた.そこでは風速比が2.07となり,この値は高さによ り余り変化しなかった. 内層内では乱れの成分速度 *g*u

第13図 鉄道盛土上の風速比と高さとの関係,Zは 地上からの高さを表す (Baker, 1985).

第14図 岡の地形, 等高線は 10m である (Mason and King, 1985).

 σ_v , σ_w は基準点のほとんど2倍に達していた. 高さが 増し外層内に入ると, σ_u , σ_v は次第に減少したが, σ_w はほぼ一定であった. シャー応力はジェットの上方では ほぼ一定であったが,下方地面に近づくにつれて急に大 きくなり,風上側の2~3倍となった.

Mason・King (1985) は第14図のような高さが約100 m, 直径が約800mの岡の周りの風速及び乱れの測定を 行い,理論計算と比較した.岡の頂上8mにおける風速 比は1.7となり,風下側斜面では逆流が観測された.第 15図では頂上Sと斜面下方のC点における風向・風速を 基準点Rと比較したものである.実線は理論値,点線は 実測値である.C点が風下側になると,理論値は実測値 から大きくはずれることがわかる.頂上で観測した乱れ は,高さとともに著しい変化を示した.

Bradley と Mason・King の岡の頂上における外層内 の値を比較すると第2表のようになる.表にある乱流速

1987年8月

第15図 岡の頂上, 傾斜面の風向・風速と基準点の風向・風速との 比較 (Mason and King, 1985).

第2表 3次元の岡の頂上の風速,乱流速度の変化

	傾斜(度)	<i>h</i> (m)	<i>L</i> (m)	$z_0(m)$	<i>l</i> (m)	<i>∆z</i> (m)	U/U_R	σ_u^2/σ_{u0}^2	$\sigma_v^2/\sigma_{v_0}^2$	σ_w^2/σ_{w_0}
Bradley	20	170	600	1.1	50	80	2.1	0.99	1.26	2.44
Mason & King	24(最大)	100	約800	0. 01	16	14	1.6	0.82	1.05	1.74

度は風速比 U/U_R の実測値を用いて計算した値であり, Bradley の実測値はそれぞれ 1.2, 1.4, 2.7 となってい る. 外層では乱渦の伸長 (rapid distortion) により,長 さのスケールが増し,その結果 w-成分に余分のエネル ギーが付加されたと考えられる.

3.4 岡・斜面の頂上における増強度

前に述べた測定も含めて,これまで実施された傾斜面 ・岡の周りの風に関する測定のうちから現地実験を中心 として,頂上における風速増強を第3表に示す.表には 研究者名,地形の形状,斜面の傾斜,最大風速比が記し てある.風速比の取り方は1章の終わりに記してある が,表中*印を付したものは②の方法,△印を付したも のは③の方法,他は①の方法による.傾斜のh,Lはそ れぞれ地形の代表的の高さと長さである.

斜面の傾斜を15度から90度の広範囲に変化させた, Counihan (Hunt and Simpson, 1982), Bowen・Lindley (1977), 藤本ほか (1980)の風洞実験では, 最大 風速比が1.5~1.7となっており,この値は傾斜の大きさ によりあまり変わらないとしている. Bowen (1979)の 斜面及び崖の観測では,風速比は約1.4となっている.塩 谷・林田 (1963),新井ほか (1972), Baker (1985)の鉄

10

道盛土の観測では、風速比は1.4~1.7となっている.円 形または楕円形の岡では、Mayson・Sykes (1979), Bradley (1980)の観測によると、風速比は2程度の値となっ ているが、より傾斜の小さい楕円形の岡では、Teunissen (1983)は1.4と小さい値を得ている.なお、構造物耐風 設計基準によると、ヨーロッパでは傾斜17度以上の2次 元の斜面・三角形の岡に対して、1.36の値をとるよう指 示している.

頂上における風速比について, JH 理論による計算値 と観測値を比較すると Berlyand *et al.* (Hunt and Simpson, 1982) は 2 次元の岡において, 1.26 に対し 1.2~ 1.3, Mason・Sykes (1979) は円形の岡において, 2.0 に対し, 2.3, Bradley (1980) は円形の岡に おいて, 2.24に対し2.07となり, 両者の間によい一致を見てい る.

JH 理論を利用して, Bowen (1983) は剝離を生じな いような 2 次元の傾斜・岡の頂上における速度増加 4Uを推定することを試みた.第16図のように,ベル型,三 角形の岡及び斜面をモデルとして選び,図のように $h \cdot L \cdot x$ を決めると,外層における 4Uは(1)式で与え られるが,形状で決る $\sigma(x, z)$ は岡または斜面の頂上

*天気//34.8.

地物・小地形と風

第3表 岡・斜面等の単純地形頂上の風速の増強度

著者名	形状	傾 斜	最大風速比
塩谷・林田 (1963)	盛土(平地)	35°	1.5*
Davidson et al. (1964)	岡(3次元?)	0.2より大	1.04
Berlyand et al. (1968)	岡 (2次元)	0.2~0.37	1.2~1.3
新井ほか (1972)	盛土(川筋)	35°?	1.4*
Hardman et al. (1973)	岡 (3次元?)	h/L = 0.37	1.0^
Counihan (1973)	傾斜(風洞)	14~45°	1.5
Bowen and Lindley (1977)	傾斜(風洞)	1/4~90°	1.7
Bowen (1979)	傾斜(平地) 崖(平地)	1/2 90°	1.4 1.4
Mason and Sykes (1979)	円形の岡	h = 130m $L = 600m$	2.3
藤本ほか (1980)	傾斜(風洞)	15°~90°	1.6~1.7
Bradley (1980)	円形の岡	h = 170 m $L = 600 m$	2.07
Britter et al. (1981)	小山(2次元)	0.26	1.5
Teunissen (1983)	楕円形の岡	h = 100 m L = 1,000 m	1.4
Baker (1985)	盛土(平地)	25~35°	1.6~1.7
Mason and King (1985)	小山(3次元)	100/800	1.7

(注)記号, *, △については本文参照

では下のように,

ベル型の岡:
$$\sigma(z) = \frac{1}{\{1+(z/L)^2\}}$$

三角形の岡: $\sigma(z) = \frac{1}{\pi} l_n \left(\frac{1+(z/L)^2}{(z/L)^2} \right)$
斜面: $\sigma \left(\frac{L}{2}, z \right) = \frac{1}{2\pi} l_n \left(\frac{1+(z/L)^2}{(z/L)^2} \right)$

となる. JH 理論はもともと $h/L \ll 1$ に対して適用する ものであるが, h/L のもっと大きい値, 極端にはh/L =0.5 の実測にも当てはまる. Bowen は 3 つの型の 地形 の実測値を $\sigma(z)$ と z/L のグラフで表し, 第17図のよ うになることを示した. これらの 実測値の 範囲は 外層 (z>l) では (1), (2) の式で表すことができるので, 内 層 (z < l) では別の理論式をあてはめて, 第18図のよう な最大風速比を予測する曲線を提案した.

3.5 パワースペクトル

1987年8月

前述の第18 図によれば、風速増加分 4U は内層と外層の境界付近で最大となり、そこから地面に向って減少する。地面付近では速度分布を対数分布で近似すること により、摩擦速度 u_* を求めることができる。Panofsky et al. (1982) は小山の頂上におけるスペクトル (Bradley, 1980) を $-\overline{u'w'}u_*$ で無次元化して、第19 図に表 (a) h $\frac{x}{L}$ (b) $\frac{x}{L}$ (c) h $\frac{x}{L}$ $\frac{x}{L}$

第16図 代表的な2次元地形と特性長 (Bowen, 1983).

した. 図でKと記したものは, 平地におけるスペクトル である. u 成分のスペクトルは高周波部分で慣性小領域 の形をとるが, 低周波部分は減少している. w 成分のス ペクトルは平地のものと変わっていない. 彼等は更に,

第17図 3 種類の 2 次元地形の頂上における風速増 加と高さとの関係, z は地上高を表す (Bowen, 1983).

第18図 第17図を表す実用曲線 (Bowen, 1983).

斜面や崖の上,海からの風が陸に吹き上る場合などの地 形変化によるスペクトルの変化を調べ,次のような仮説 により説明がつくとした.すなわち,気流が特徴の異な る地面に流入したとき,①新しい地面への吹送距離と比 較して短い波長のスペクトル密度は,すぐ下の新しい地 面と平衡状態になる.②吹送距離と比較して長い波長の

第19図 円形の岡 (高さ 170m) の頂上のパワース ペクトル (Panofsky *et al.*, 1982).

スペクトル密度は、地面が平坦ならば変化しないでいる が、岡を越えるときは減少する. ③鉛直スペクトルは長 波長の部分がないので、スペクトル密度は常にすぐ下の 地面と平衡状態になる. 従って、u-成分の低周波部分 は上流側の地形のメモリーを残している.

しかし, Mason・King (1985) は山の頂上と基準点 でスペクトルを比較したところ,地上14mの高さでは変 化は w 成分のみに認められ,山頂ではエネルギー最大 部分の波長が約2倍長くなったとしている.地形とパワ ースペクトルの関係は,今のところデータが十分ないの ではっきりした事は言えない.

4. 複雑地形

4.1 複雑地形の風とその研究の困難性

これまでは、もともと複雑である地形から基本的と思 われるいくつかの形を選びだし、周囲は平地と考えて風 の性質を求めたものである。わが国のように地形の複雑 なところでは、道路・鉄道や特別な造成地のような人工 地形の場合にしか当てはまらない。

やや規模が大きいがよく現れる地形としては、小河川 の河口付近,特に両側が山地で岬となって河口を抱え込 んでいる個所とか,両側が山地の狭い海峡部のように気 流の水平収束が予測される場合である.前者の例は日本 海沿岸に多く,冬季に強風が経験されている.例えば,昭 和61年12月末に回送列車の転落事故にあった余部橋梁の 風については,塩谷・高橋(1959)の調査があり,橋梁 付近の強風部では,風速が付近の気象官署である鳥取, 豊岡に比較して強いこと,橋梁上では収束が一様に行わ

*天気// 34.8.

第20図 2次元の谷(断面は左上の図)の成分風速比と風向の関係(a)谷 に平行な成分,(b)谷に垂直な成分,測定高は8m(Mason and King, 1984).

れず,東側は西側に比較して風が強くなっていることが 指摘されている.後者の例としては,瀬戸内海におい て,本州と四国を結ぶ送電線や橋のルートにあたる海峡 付近の風の調査が多くなされ,海峡内では風は一様な増 速を受けないで,微妙な地形の変化に応じて強風域・弱 風域が生じ,それらは僅かな風向の変化に応じて位置を 変えることが報告されている.

地形の形状はケース毎に異なっているので,例えば1 つの海峡の風観測の結果を,他の海峡の風の推定に対し て参考にすることができても,全面的に利用することは できない.また,調査結果を記述する場合も,1~2枚 の図面と数行の記述によって,現地を見たこともない人 に地形を正確に伝えることは困難である.このような事 情と紙面の制限もあって,本文では2次元の谷間の例, 一般によく知られている鳴門海峡,やや地形の規模が大 きくなり過ぎるが,山地の風として京都大学防災研究所 の報告に限定して記載する.

4.2 2次元の谷の風

Mason・King (1984) は、いくつかの尾根と谷がほ とんど等間隔をおいて平行に連なっている地形の中央部 を選び、2次元の谷における中立状態の気流を調べた. 谷の両側の斜面は約32度の傾斜を持っている.風が谷に 直角に当たった場合は、谷底では風速は尾根(山頂)の 0.1~0.2倍になっている. 傾斜が急であるから,風向が 谷と60度以上では山頂で剝離が生じ, 剝離による渦領域 は斜面を埋める程度から,谷全体を埋める程度までにな る.山頂風速を地衡風速と比較すると,風が谷に平行な 場合は0.45倍,谷に直角な場合は0.70倍となる.

第20図に2次元と思われる谷の地形断面,谷に平行な 速度成分,谷に直角な速度成分の風向による変化を等値 線図で表す.谷は350°の方向から170°の方向に向いてい る.図の数字はS点との風速比を表している.等値線の 間隔は0.25である.風向が谷間に平行な場合は,谷底の 風速は山頂の風速よりも小さい.これはおそらく,谷間 では粗度が大きいことが原因していると思われ,谷の収 束効果より粗度の減速効果が勝ったためであろう.

山頂における乱れの速度は、横方向の成分が大きくな っている以外は、代表的な平地の値と余り差はない.ま た、乱れのエネルギーも平地と比較してそれほど大きく はない.風向が谷に直角な場合は、谷底の乱流速度はそ こでの平均速度を越える.スペクトルを求めると、谷の スケール程の乱渦が乱れのエネルギーの増加に寄与して いることがわかる.谷に平行な流れでは、乱れのエネル ギーは谷底のほうが山頂より大きい.

4.3 鳴門海峡の風

第21図に示すように、淡路島と四国側の大毛島の両側

1987年8月

第21図 鳴門海峡周辺の観測点と平地(1:里浦)との風速比(森・光田, 1974).

から突出した半島に挾まれた海面が鳴門海峡である.特 に淡路島側からは,第22図に示すような断面の半島が約 1km にわたって突出している.先端の門崎に送電塔が 建っており,風速測定に利用された.送電塔の基部は海 抜42mであり,塔から見て南東側は北西側に比較して斜 面が長い.

森・光田(1974)は海峡付近の半島上,海峡内の小島 の地上高10mの風速を,海峡の南方約5km離れた,地形 の影響の及ばない里浦(地点番号1)の風速と比較した. 第21図の中の表は風速比を記してあるが,地形による風 の増強の著しい箇所では,風速比が2に達している.別 に半島地区の1/12,000の模型による実験では,風速比は 大きくとも1.3程度を越えなかった.観測地点近傍の微小な地形が増速と関係があり,模型では細かいところまで自然を表せなかったかも知れない.また,1/4,000, 1/2,000の模型により,海峡付近の風速の水平分布を測定した.第23図では NNE から SSW の方向で,海峡 中央部と送電塔の位置を通る2例を示す.海峡中央部は 風速はほぼ一定であって,風の水平収束は認められない.半島上では風速は1.2~1.3倍増幅されているが,第 3表の2次元の岡に比較すると小さい値となっている. 半島上で気流は剝離し,風下側は風速が小さくなってい る.送電塔に取り付けた4個の風速計の記録と模型実験の結果の比較を第24図に示す.半島上50m以下では増速 がみられるが,ジェット状になるほど著しいものではない.1/2,000模型の結果は実測とよく合っている.

Shiotani・Iwatani (1979) は同じ送電塔により,風 速・風の傾斜・乱れの測定を行った.北西の風向と南南 西の風向に分けて,結果を第25図に示す.最高位の風速 計位置 (*1z*=69m)を基準にすると,風速鉛直分布は 上方に小さくなる部分があり,ジェット状の風速増強の 存在を示唆している.その下層では乱れの速度は大きく, スケールは小さくなっており,半島の風上部分から剝離

*天気// 34. 8.

した気流内にあることがわかる. 剝離線は北西の風では 0.5 h 以下, SSE 方向では0.5 h 位に位置すると思われ, この差は半島斜面の地形の差から説明がつく. また,半

第23図 鳴門海峡における風速水平分布,上:海峡 中央,下:送電塔付近(森・光田,1974). (記号の説明は第24図を参照)

島上では気流は上向きとなっており,高さ1.5h でも5 度位の角度がある.乱れの強さは,別に測定した開けた 海面上の値と比較して大きな差はなかった.

4.4 山地の風のケーススタディ

光田ほか(1970)は鈴鹿山脈笠取山の標高800m 程度 の稜線に沿って,第26図に示すように,高度差約20 m,延長320mの間に8カ所の観測点(地上高度6~8 m)を設け,台風時に風速・乱れの測定を行った.稜線 にほぼ直角に強風が当たった場合の観測値を第4表に示 す.地形の変化による風速の差が大きく,中央の突起部 E点と,2つの突起部A・E点の間の窪地C点の,平均

第24図 半島上の風速鉛直分布,模型と現地との比 較(森・光田, 1974).

第25図 半島上の風速・傾斜角・乱れの鉛直分布 (Shiotani and Iwatani, 1979).

1987年8月

wind

第2020 田地の地形と風速測定位置, 寺商線の间隔 は5m (光田ほか, 1970).

第4表	山稜における風速および乱れ	(光田ほか,
	1970).	

Acres von the		風速	乱れの	ガスト	
	平均	標準偏差	最大 瞬間値	強さ	ファクタ
	U	σu	U_m	σ_u/U	U_m/U
	m/s	m/s	m/s		
Н	29.3	6.3	48	0.21	1.6
G	20.7	3.5	32	0.17	1.5
F	36.5	4.6	45	0.13	1.2
Е	47.1	4.4	68	0.09	1.4
D	25.6	4.7	39	0.19	1.5
С	13.6	6.4	41	0.48	3.0
В	30.5	5.9	49	0.19	1.6
Α	24.4	5.7	39	0.23	1.6

風速・最大瞬間風速を比較すると、E点ではそれぞれ47.1 m/s, 68m/s であるが、C点ではそれぞれ 13.6m/s, 41m/s となり平均風速に大きい差が生じている。E点 は隣りのD・F点に対して、風速比が1.6ぐらいとなっ ており、Hunt・Simpson (1982) はこの風速の増強や乱 れの速度と平均風速の関係は,理論により説明がつく としている.表には記していないが,2点間の風速の相 関係数はわずか40mの間隔で0.1以下になっている場合 が多く,地形の高低は乱れのスケールを小さくしている ことが推測される.

上記のほかに光田・塚本(1984)は標高約700mの地 点で送電線ルートに沿って,高低差約150m,延長700m の範囲で風向・風速・乱れの測定を行った.送電線ルー トは山稜をいくらか外れていたために,前述のように突 起部が中間の窪地より風が強いという測定結果が得られ ていない.ある方向の風では,乱れの速度は平均風速が 大きく変化しているにもかかわらず,ほぼ一定である. 変分法を用いて3次元地形の風速を推定すると,風は稜 線で大きくなると述べているが,複雑地形の風の予測は 単純地形から得られた簡単なルールで行うことは困難と 思われる.

5. おわりに

柵および小地形の周りにおける中立状態の気流および 乱れを、最近の風工学関係の文献を中心とし、著者の周 辺で行われた調査も加えて述べた、最近この方面の理論 的研究は外国において著しいものがあるが、計算手法は 除外して、本文では現地実験、風洞実験の結果のみを述 べた。岡・斜面・崖などの単純地形においては、頂上で は風速は増強し、最大風速比については各所の実験や計 算ではほぼ一致した値が得られている。2次元の斜面・ 崖については、最大風速比は斜面の傾斜や地面粗度にあ まり影響されないが、3次元の岡では、頂上の風速比は 傾斜が増すと大きくなる。頂上の風上側では、流れや風 速分布は模型と現地実験の間でよい一致を得ている。頂 上の風下で剝離が生じる場合は、模型と実際の間には差 が生じる、このような場所では理論の予測では差が一層 大きくなる。斜面の傾斜及び粗度の増加は風下側の剝離 を促進するように思われる.

2次元の地形が連なっている場合は、風は稜線で強 く、谷底では弱い.3次元の複雑地形においても傾向は 変わりないと思われるが、風の強弱の位置は複雑である から、地形だけを見て判定をするのは困難である.ビル の谷間の強風のような、収束効果 (channeling effect) を実証するような観測例は本文では挙げられなかった が、低地でも強風域が発生する可能性がある.

複雑地形の風況の把握は現地観測が最も望ましいが, 作業の困難さや測定点の制限もあり広範囲の実施は不可

*天気//34.8.

能である.現在のところ3風洞実験に頼らざるを得ない が,模型製作において,広範囲な地形から対象地区を取 り出すときにいろいろ問題がある.計算手法の進歩や計 算機の性能向上により,将来は理論による予測も期待で きるかも知れない.

本文は第9回風工学シンポジウム(昭和61年12月)に おける特別講演に削除,追加,修正を行ったものであ る.ほとんどの図は原典より借用し,全体の体裁を整え るために,記号の変更,部分的に削除を行った.原著の 意とする所を伝えられなかったとしたら,著者の浅学の いたすところである.

文献

- 新井秀雄・林田千秋・西沢生一・土屋 恂,1972:国 鉄北陸線の曲線部における風向・風速特性,第2 回構造物の耐風性に関するシンポジウム論文集, 11-18.
- Baker, C.J., 1985: The determinition of topographical exposure factors for railway embankments, J. Wind Eng. Ind. Aerodyn., 21, 89-99.
- Bowen, A.J. and D. Lindley, 1977: A wind tunnel investgation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes, Boundary-Layer Met., 12, 259-271.
- _____, 1979: Full scale measurements of the atmospheric turbulence over two escarpments, Proc. 5 th Int. Conf. Wind Eng., Pergamon Press, 161-172.
- _____, 1983: The Prediction of mean wind speeds above simple 2 D hill shapes, J. Wind. Eng. Ind. Aerodyn., 15, 259-270.
- Bradley, E.F., 1980: An experimental study of the profiles of wind speed, shearing stress and turbulence at the crest of a large hill, Quart. J.R. Met. Soc., 106, 101-123.
 - _____, 1983: The influence of thermal stability and angle of incidence on the acceleration of wind up a slope J. Wind Eng. Ind. Aerodyn., 15, 231-242.
 - , and P.J. Mulhearn, 1983: Development of velocity, shear stress distributions in the wake of a porous shelter fence, J. Wind Eng. Ind. Aerodyn., 15, 145-156.
- Britter, R.E, J.C.R. Hunt and K. J. Richards, 1981: Air flow over two-dimensional hill:studies of velocity speed-up, roughness effects and turbulence, Quart. J. R. Met. Soc., 107, 91-110.
- Finnigan, J.J. and E.F. Bradley, 1983: The turbulent kinetic energy budget behind a porous

1987年8月

barrier, J. Wind Eng. Ind. Aerodyn., 15, 157– 168.

- 深尾康三・岩佐義輝・川端三朗・又木義浩,1980: 中高層建築物周辺の風害防止対策に関する研究ー 暴風フェンス遮風性能について,第6回風工学シンポジウム論文集,107-114.
- 藤本盛久・大熊武司・赤木久真・田村哲郎・大木弘 志,1980:風の風況に及ぼす地表粗度ならびに地 形の影響に関する基礎研究,第6回風工学シンポ ジウム論文集,45-52.
- 秦野武雄・今井篤雄・前田考一, 1966: 防雪柵の機 能試験(1), 鉄道技研速報, No. 66-1016, 1-35.
- Hunt, J.C.R. and J.E. Simpson, 1982: Atmospheric boundary layers over non-homoge neous terrain, Engineering Meteorology (Plate ed.), Elsevier Sci. Pub., 269-318.
- Jackson, P.S. and J.C.R. Hunt, 1975: Turbulent wind flow over a hill, Quart J. R. Met. Soc., 101, 929-955.
- Mason, P.J. and R.I. Sykes, 1979: Flow over an isolated hill of moderate slope, Quart. J. R. Met. Soc., 105, 388-395.
- and J.C. King, 1984: Atmosheric flow over a succession of nearly two-dimensional ridges and valleys, Quart. J. R. Met. Soc., 110: 821-845.
- and —, 1985: Measurements and predictions of flow and turbulence over an isolated hill of moderate slope, Quart. J. R. Met. Soc., 111, 617-640.
- 三上 力・新堀喜則・薬袋寿紹・加藤信男, 1980: 自然風中の各種防風施設の効果に関する実験, 第 6回風工学シンポジウム論文集, 99-106.
- 光田 寧・藤谷徳之助・松原一郎,1970:山岳地方 における風の特性について,第1回構造物の耐風 性に関するシンポジウム論文集,71-80.
- -----・林 泰一, 1979: 日本における風エネル ギーの評価, 天気, 26, 583-594.
- -----・塚本 修, 1984: 山岳地における風の乱 れについて (2), 第8回風工学シンポジウム論文 集, 25-30.
- 森 征洋・光田寧, 1974: 鳴門海峡付近の風の特性 の実験的研究, 第3回構造物の耐風性に関するシ ンポジウム論文集, 45-52.
- 村上周三・出口清孝・高橋岳生, 1984: 樹木の防風 効果に関する研究, 第8回風工学シンポジウム論 文集, 107-114.
- 日本鋼構造協会,1983: 耐風設計に関する文献資 料.
- Panofsky, H.A., D. Larko, R. Lipschutz, G. Stone, E.F. Bradley, A.J. Bowen and J. Højstrup, 1982: Spectra of velocity components over complex terrain, Quart. J.R. Met. Soc., 108, 215-230. 塩谷正雄・高橋喜彦, 1959:山陰線余部橋梁の風速

と風圧,鉄道技研報告,272,1-49.

- 塩谷正雄・林田千秋, 1963: 築堤周りの風, 鉄道技 研速報, No. 63-10, 1-26.
- Shiotani, M. and Y. Iwatani, 1979: Gust structures over flat terrains and their modification by a barrier, Proc. 5 th Intern Conf. Wind Eng., Pergamon Press, 203-214.
- 塩谷正雄, 1981: 強風の性質, 開発社, 118-149.
- Teunissen, H.W., 1983: Wind-tunnel and fullscale comparison of mean wind flow over an

isolated low hill, J. Wind Eng. Ind. Aerodyn., 15, 271-286.

- 鉄道技研防災研究室・秋田鉄道管理局施設部,1960: 吹雪防止人工樹列生垣林現地実験,鉄道技研速報, No. 60-257, 1-48.
- Wilson, J.D., 1985: Numerical studies of flow through a windbreak, J. Wind Eng. Ind. Aerodyn., 21, 119-154.
- Yoshino, M., 1975: Climate in a small area, Univ. of Tokyo Press, 183-302.

「地域防災国際研究・研修セミナー」のお知らせ

- 会期 昭和62年10月13日 (火)~23日 (金)
- 会場 東 京:日本学術会議講堂(13日~17日)名古屋:国際連合地域開発センター

(19日~23日)

趣旨:地域開発計画と防災の枠組みの中で,防災体制, 緊急体制,復旧・再建の枠組みから,先進国の研究成果 の報告,開発途上国の事例研究の報告および IDHR (国 際防災旬年)に関する報告による情報交流や提言,意見 交換を行い,今後の国際的な調査研究の一助とすると共 に,開発途上国における災害に強い地域づくり,安全な 居住環境づくりを進めて行くための地域防災計画の立案 および実施に必要な人材に寄与することを基本目的とす る.

主題:

- 災害防備体制:災害防備体制への研究成果の反
 映,防災計画の事前評価,防災教育,防災活動
- 2 緊急体制:情報伝達(発災前,発災後),緊急避難, 救援・救急・援助

- ③ 復旧・再建:復旧・再建を考慮した防災計画,復 旧・再建時の課題(応急復旧,必要施設整備,復 旧・再建資金)
- ④ IDHR (国際防災旬年)

⑤ 防災研究の現状と課題

参加予定者:海外より約20名,日本国内より約200名 程度を予定している。特に海外からは,米国より6名 (E.L. Quarantelli, D.S. Mileti 等),アジアより7名(イ ンド,フィリビン,トルコ,中国,マレーシア,インド ネシア,タイ),中南米より3名 (メキシコ,コロンビ ア,ベルー),国連機関より5名の参加を予定している.

問い合わせ先:

〒450 名古屋市中村区那古野 1-47-1

国際連合地域開発センター

地域防災国際研究・研修セミナー

(担当 和泉, 国技) TEL 052-561-9378

月例会「長期予報と大気大循環」のお知らせ

標記の例会を 次の通り 開催 しますのでご参加 ください.

なお,今回はシンポジウム形式で行い,講演の公募は いたしません.

- 日時:1987年10月2日(金)13:30~17:30
- 場所:気象庁 第一会議室 (5F)
- テーマ:「1986/87 ENSO」について
 - ①海況の特徴 ②「なつしま」の観測成果 ③全
 球大気の特徴 ④世界の異常天候 ⑤ 1987 年夏

の長期予報における ENSO の評価 ⑥特別講演 「ENSO on set の予測」

(九州大学・山形俊男)

以上,今回の ENSO について実況監視結果の報告と 講演,並びに討論を行います.

問合せ先:気象庁長期予報課 能登正之・栗原弘一 (TEL 03-212-8341 内線 329)

506