晴天乱気流の数値シミュレーション*

遠峰菊郎・若松桜男・阿部成雄**

要 旨

晴天乱気流 (CAT) は大気中の不連続層やジェット流の近くで観測されることが多く, 航空機の運用上重 要な現象である。ここでは, 比較的低空に現われる CAT について不連続層と山岳の存在との関係を調べる ために, 数値実験を行う。実際に CAT が観測された例をモデルとしてジミュレーションを行ったが, CAT が観測された位置, 高度, 波長等, 観測結果とよく一致する結果が得られる。

1. はじめに

航空機の運用上重要な CAT (Clear Air Turbulence, 晴天乱気流)は、ケルヴィンヘルムホルツ波(K-H波) による現象であると言われている。Browning (1971, 1973) は, 航空機で鉛直シャーが大きい領域を飛ぶこ とにより CAT を確認し、その時の擾乱をレーダー及び 航空機上の観測器機により測定し、擾乱の波長がシャー 層の厚さの約7.5倍であることから、この CAT は K-H波によるものであると述べている。また、低高度にお いて発生する CAT については、地形の影響が大きいと 言われている(柴田, 1968). 第1図は冬期5年間にお いて, 富士山頂の風向が(a) 西から北西の場合, (b) 南西から西南西の場合における,高度6km以下で自衛 隊機による CAT への遭遇率分布図である(柴田, 1968). a 図では関東山地の東側,及び三国山脈の南東 側で遭遇率が大きく、b図では伊豆半島から房総半島に かけて遭遇率が大きいことが分かる。このように風向き によって遭遇頻度が大きい領域が変わるのは、上空のシ ヤー層または前線の位置の相異と地形の影響によるもの と考えられる.

そこで、上空にシャー層がある場合の山岳地形による CAT の発生現象を理解するために、CAT が観測された 例をモデル化して 数値実験 を 行 う. この CAT は吉野 (1984) により 紹介されたもので、 その概要は第2節で 述べる. ここで用いられた数値モデルとその結果につい

* Numerical Simulation of a Clear Air Turbulence.

** Kikuro Tomine, Sakurao Wakamatsu, Shigeo Abe, 防衛大学校地学教室.

-----1987年4月27日受領-----------1987年7月29日受理-----

1987年10月

第1図 富土山の風が 50 kt 以上吹いた時、冬期、 20,000フィート以下における、自衛隊機に よる乱気流の遭遇率.(a) 北西風、(b) 西南西〜南西風の場合(柴田, 1968).

(a)

てはそれぞれ第3,4節において述べる.

2. 観測された CAT の概要

吉野 (1984) によれば、1981年12月20日09 JST 頃、

第2図 CAT が観測された時の(a) 700 mb 天気 図,等高線(実線),等温線(破線),(b) 大気断面解析図,等温位線(実線),矢印 は航跡,33332 印は CAT 遭遇域,(c)FDR 解析図(吉野,1984).

房総半島南端上空,約12,000から7,000フィート(3.6 ~2.1 km)の間を降下中の航空機によりシビアー CAT が観測された.第2 a 図に当時の700 mb 天気 図を示 す.これによれば、トラフ前面の暖気移流、後面の寒気

▶天気// 34. 10.

移流により,関東上空にシャープな前線帯が形成されて いる.大気の断面解析図(第2b図)を見ると,この CAT は安定層の下部,鉛直シャーが大きく,リチャー ドソン数が小さい領域で発生していることが分かる. FDR (Flight Data Recorder)の解析図を第2c図に示 す.これによれば,CAT は約3分間持続し,対気速度 は285 kt (143 m s⁻¹)を中心として約±10 kt (5 m s⁻¹) の振動をしており,鉛直加速度は0.3 から2G位であっ た.次に山岳が CAT に及ぼす影響を調べるために,数 値実験を行う.

また, この CAT が観測されていた時の富士山頂の風 向は西から 北西であり (第2 a 図), 第1 a 図に属する 例である.

3. 数値モデル

3.1 支配方程式系

擾乱は鉛直2次元とし、山脈に直交する方向に2軸を 取る.この山脈は伊豆箱根付近の山岳を想定しており、 この山岳が上空のシャー層に及ぼす影響を考察する. Peltier, Hallé and Clark (1978) に従い、大気は乾燥 していると仮定し、コリオリ力は無視する.支配方程式 系を以下に示す.

$$\frac{du}{dt} = -\frac{1}{\bar{\rho}} \frac{\partial p'}{\partial x} + K_m \Delta^2 u' - (F_1 + F_2) u' \quad (1)$$

$$\frac{dw}{dt} = -\frac{1}{\bar{\rho}} \frac{\partial p'}{\partial z} - p' \frac{g}{\bar{\rho}} + K_m \nabla^2 w$$
$$-(F_1 + F_2) w \tag{2}$$

$$\frac{\partial}{\partial x}(\bar{\rho}u) + \frac{\partial}{\partial z}(\bar{\rho}w) = 0$$
(3)

$$\frac{d\theta'}{dt} + w \frac{d\bar{\theta}}{dz} = K_m \nabla^2 \theta' - (F_1 + F_2) \theta'$$
(4)

$$\rho' = \frac{p'}{c^2} - \bar{\rho} \frac{\theta'}{\theta} \tag{5}$$

$$c^2 = C p R \overline{T} / C v \tag{6}$$

1987年10月

$$-\bar{\rho}(F_1+F_2)\left(\frac{\partial u'}{\partial x}+\frac{\partial w}{\partial z}\right)$$
(7)

ここで拡散係数 (K_m) は山頂以上で $1 \text{ m}^2 \text{ s}^{-1}$, それ 以下では線形に増大し, 地表 では $2 \text{ m}^2 \text{ s}^{-1}$ とする.式 (6) は式 (1), (2) より得られる p' に関する診断方 程式である.

 \bar{p} , \bar{p} , $\bar{\theta}$ に対して理想気体の状態方程式及び静力学の 関係が成り立つとする.

$$\bar{p} = \bar{\rho} R \bar{T} \tag{8}$$

$$\frac{dp}{dz} = -\bar{\rho} g \tag{9}$$

$$\bar{\theta} = \bar{T} (p_0/\bar{p})^x \tag{10}$$

ここでu, u'は水平速度と、その初期値からの偏差、 $\bar{\theta}$, θ' , p_0 は温位の初期値とそれからの偏差、及び 1000 mb を表わす.

3.2 計算領域

観測された CAT が伊豆箱根付近の山系の影響を受け ているとすれば、計算領域は両者間の距離よりも長く取 らなければならない.また、数 km の波長を持つ K-H 波を表現しなければならない.そこで第3 図に示されて いるように、水平・鉛直方向にそれぞれ 204.8 km,8 km の領域を取り、格子間隔は水平方向に 200 m,鉛直 方向に 80 m とする.

山の形 f(x) は次式により与える.

$$f(x) = H \exp\{-(x-x_c)^2/l^2\}$$

ここで

$$H=1 \text{ km}$$
$$x_c=30 \text{ km}$$
$$l=4.8 \text{ km}$$

とする.

第4図 (a) 風速と温位の初期値. (b) 初期におけるリチャードソン数の分布.

地表 (z=0) において $w=u_0 \frac{df}{dx}$ を与えることにより、山岳の効果を取り入れる. ここで u_0 は地表 (z=0)

における初期値を表わす.

3.3 境界条件

横方向にはサイクリックであるとする. 地表面においては,

 $u \equiv 23 \text{ m s}^{-1}$

 $\theta' = -(\bar{\theta}_{z=f} - \bar{\theta}_{z=0})$

とし、スリッピング境界条件 $\left(\frac{\partial u}{\partial z}=0\right)$ を仮定する. こ こで地表風速 23 m s⁻¹ は、館野における実測風に比べか なり大きい. しかし、この実測風を用いると、地表付近 でリチャードソン 数が 小さく、不安定 になる. そこで 850 mb おける実測風を用いた.

計算領域の上限においては,

 $\frac{\partial \theta'}{\partial z} = 0$ スリッピング $\left(\frac{\partial u}{\partial z} = 0\right)$, リジッドリッド (w=0) 境界

条件を仮定する.

(1), (2), (4) 式の 最後の項は 消散項であり, 第
 3 図の斜線の領域に適用し, F₁, F₂ は次のように与える
 (Tanaka, 1975 a, b).

$$F_1 = K_f(z-z_l)/z_t$$
 (領域A)

 $F_1 = 0$
 (領域A以外)

 $F_2 = K_f(x-x_l+x_t)/x_t$
 (領域 B_1)

 $F_2 = K_f - K_f(x-x_l)/x_t$
 (領域 B_2)

 $F_2 = 0$
 (領域 B_1, B_2 以外)

ここで,

 $K_f = 1/120 \text{ s}^{-1}$ $z_l = 7, 200 \text{ m}$ $z_t = 800 \text{ m}$ $x_l = 199, 800 \text{ m}$ $x_t = 5,000 \text{ m}$

とする. なお p' に対する境界条件は,(2) 式と u, w, θ' に対する境界条件より求まる.

3.4 初期条件

CAT が観測されている 房総半島南端上空において, ソンデによる観測は実行されていないので, 館野におけ るデータにより初期条件を与える.上下境界からの擾乱 を避けるために,境界付近の風速を一定とし,また,上 部境界付近の温位分布を第4 a 図のように鉛直方向にな らして,風速(u),および温位(θ)の初期値とする. この初期値に対するリチャードソン数の(R_i)分布を第 4 b 図に示す. R_i が 0.25 より小さい領域は,高度 0.8 km,2 km,4 km 付近に見られ,ここが不安定領域であ る.

4. 計算結果

第5 図に24分,48分,56分後の温位分布を示す.山の 風下側,地表付近,2km付近,4km付近に擾乱が見ら れる.これらはすべて,初期におけるリチャードソン数 が小さい不安定領域である.航空機により観測された CAT の高度は約4kmなので,今後,この4km付近 に算出された擾乱について述べる.

この擾乱近傍における48分と58分後の温位分布の拡大 図を第6図a,bに示す. 48分後(a図)においては温 位の高い気塊と低い気塊が相互にからみ合い,静的に不 安定な領域を形成している. 56分後(b図)になると,

▶天気//34.10.

第5図 (a) 24分, (b) 48分, (c) 56分後の温 位分布.

Peltier *et al* (1977)の結果にも見られるように、この優乱は細かく砕けている.

この擾乱の特徴を明らかにするために、いくつかの解 析を行う.まず運動量の鉛直フラックス($\bar{\rho}$ $\overline{u'w'}$)の鉛

1987年10月

直分布の時間変化を第7図に示す. ここで u^{'w'} は水平 方向に平均して求めるが,その平均領域は計算領域の全 長としている. 12分から 32分頃までは弱い下向きフラ ックスが見られ,36分頃にそのフラックスは一時弱ま

629

第7図 運動量フラックスの鉛直分布の時間変化 (10-3 kg m⁻¹ s⁻¹).

り,その後,高度4km 付近において急速に増大してい る.前者の弱いフラックスは,鉛直方向に比較的に一様 なので,山岳波の効果によるところが大きいと思われ る.しかし,後者の強いフラックスは,高度4km 付近 において急速に発達した擾乱によるものである.各波数 の波による運動エネルギー(E_k)の56分後における鉛直 分布を第8図に示す.現在,議論されている擾乱は,波 数9.5×10⁻⁴(m⁻¹)に見られる E_k の極値に対応するも のであり,その波長は6.6km である.波数19.0×10⁻⁴ (m⁻¹)に見られる E_k の極値はいわゆるセカンダリーウ ェーブに対応するもので,上に述べられているウェーブ が砕けて発生したものである.この擾乱の位相速度は約 42 m s⁻¹ であり,高度4 km の一般流の速度と一致して いる.

以上の結果をまとめるとこの擾乱は、リチャードソン 数が小さい領域で発達し、その領域における一般流と同 じ位相速度を持ち、下向きの運動量フラックスを伴い、 その波長は 6.6 km である、この波長はシャー層の厚さ

を0.9 km とした場合, 最も成長率が大きい *K*-H 波の 波長である (Miles and Howard, 1964). また, 上述 してあるその他の特徴も, この擾乱は *K*-H 波であるこ とを示している. そこでこの擾乱はいわゆる 山岳 波で はなく, *K*-H 波に相異ないことを確認するために, 波 数 9.5×10⁻⁴(m⁻¹) の波による高度 4 km における運動 エネルギーの増加率 $\sigma \left(\equiv \frac{1}{E_k} \frac{\Delta E_k}{\Delta t}\right)$ の時間変化を調べ 第9 図とする. 初期において σ は正であり, 6分後には 負になっている. これは, 山に風がぶつかって生じたシ ョックウェーブの生成, 解消過程を示している. 18分後 に σ は再び正に 変わり, その後, 6×10⁻³ s⁻¹ から 4× 10⁻³ s⁻¹ の間に落ち着く. この成長率は, 線型論におけ る リチャードソン数 約 0.24 における *K*-H 波の それと よく一致する (Tanaka, 1975 a). このことにより, こ の擾乱は *K*-H 波によるものであることが確認される.

▶天気// 34. 10.

5. 計算結果と観測結果の比較

次に、この数値モデルによる K-H 波と航空機により 観測された CAT を比較する.高度については前節に述 べられているように、両者とも 4 km 付近、安定層下部 における風のシャーが強い不安定領域に現われている. 数値モデル中において K-H 波が十分に成長したのは、 48~56 分後、山脈から 120~140 km 離れた地点である が、CAT が観測されたのは房総半島南端で、これが箱 根付近の山岳により励起されているとすれば、両者間の 距離は 100 km から 140 km 位なので、計算結果とよく 一致する.第1 b 図において、房総半島南端に CAT の 遭遇率最大域があるが、これも上と同様に、箱根付近の 山岳により励起された K-H 波が、十分に成長して崩れ 始める時期にこの領域に存在することが多いからであろ うと考えられる.

FDR のデータ(第2図)を用いる際には、航空機の 特性、姿勢制御の仕方等に注意を払わなければならない が、ここでは対気速度のデータが比較的にまとまった波 形を描いていることに着目し、これから振動の周期と振 幅を求めるが、それぞれ約1分間と ±20 kt (10 m s⁻¹) である. この周期に航空機 の対気速度を乗じ、風向 (240°)と航空機の機首の向き(30°、へディング)を考 慮すると、この CAT の波長は約7.4 km となる. 数値 モデル中における56分後の K-H 波の波長と水平速度の 最大振幅は、それぞれ 6.6 km と ±12 m s⁻¹ であり、上 の結果とよく一致する. また、数値モデル中において56 分後の鉛直流の分布を見ると、最大、±3 m s⁻¹の振幅が 現れている.

6. まとめ

低高度における CAT は、山の風下において観測され ることが多い. 吉野 (1984) により紹介された例におい ても、この CAT 遭遇域の風上 100 km から 140 km 付 近に、伊豆半島から箱根付近の山系がある. そこで、こ の CAT はこの山岳により励起されたものかもしれない と考え、これを確かめるために数値シミュレーションを 行った.

その結果,リチャードソン数が小さい領域に擾乱が形成され,山脈の風下,110~150 km 離れた地域においてよく発達し,観測結果とよく合致している.この数値モデル中の擾乱は,下向きの運動量フラックスを伴い,その波長,位相速度,成長率から*K-H* 波であることが分かる.そこで,1981年12月20日09 JST に房総半島南

端付近において観測された CAT は、伊豆、箱根付近の 山系により発生させられた重力波、または何らかのショ ック波が引金となり、リチャードソン数が小さい領域に 発生した K-H 波によるものであることが分かる. 柴田 (1968) によれば、低高度における CAT は地形の 影響 を受けていることが分かるが、本研究により、房総半島 南端において CAT の遭遇率が大きくなるのは、風上側 の山系により励起された K-H 波がこの付近で十分に発 達し、崩れるからであることが分かる.

最後に,資料及び御助言を頂いた吉野勝美氏,また, データを提供して下さった館野と八丈島の高層気象観測 所及び航空自衛隊気象業務隊の皆様に深く感謝いたしま す.

文 献

- Browning, K.A., 1971: Structure of the atmosphere in the vicinity of large amplitude Kelvin-Helmholtz billow. Quart. J.R. Met. Soc., 97, 283-299.
- —, J.W. Bryant, J.R. Starr and D.N. Axford, 1973: Air motion within Kelvin-Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Ibid., 99: 608-618.
- David, C. F., 1978: The excitation of radiating waves and Kelvin-Helmhotz instabilities by the gravity wave-critical level interaction. J. Atmos. Sci., 36, 12-23.
- Michalke, A., 1964: On the inviscid instability of the hyperbolic tangent profile. J. Fluid Mech., 19, 543-556.
- Miles J.W. and L.N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331-336.
- Peltier, W.R., J. Halle and T.L. Clark, 1977: The evolution of finite amplitude Kelvin-Helmholtz billows. Geophys. Astrophys. Fluid Dyn., 10, 53-87.
- 柴田 宜, 1968: 大気下層の乱気流調査. 天気, 15, 201-209.
- Tanaka, H., 1975 a: Quasi-linear and nonlinear interactions of finite amplitude perturbations in a stably stratified fluid with hyperbolic tangent shear. J. Meteor. Soc. Japan, 53, 1-31.
- -------, 1975 b: Turbulent layers associated with a critical level in the planetary boundary layer. Ibid. 53, 425-439.
- 吉野勝美, 1984: 房総半島南端上空で遭遇した severe CAT. 1984年春季大会講演予稿集, 21.

1987年10月