1986年7月10日鹿児島市豪雨の特徴解析*

早川誠而*·鈴木義則**·前田 宏***

元 田 雄四郎****

要旨

1986年7月10日, 鹿児島市で局地的な豪雨が発生し, 死者18名を含む大きな災害を引き起こした. この豪雨は, 1983年9月6日の福岡市豪雨(早川ら, 1988)と同様に,太平洋高気圧の周辺部にあって,下層に暖湿気流が流れ込み,不安定な場となって発生したものであった. 解析の結果次のようなことが分かった.

1) 災害をもたらした豪雨は、福岡市豪雨と同様に、風上側に次々に発生した新しい降雨セルが古いセル と入れ替わりながら、組織だった系を最時間維持するものであった。

2) 降雨群のエコーが最も発達した段階におけるレーダエコーの水平分布の特徴は,降雨群の中に4個の セルが存在し,幅10~15km,長さ40kmの大きさにまとまっていた. これも福岡市豪雨とほぼ類似の構造 と規模であった.

3) 豪雨はレインパンドの走向の変化が生じるときに発生した. このレインバンドの変化は風の鉛直シア ーの変化で説明できる事を示した.

4) メソ解析の結果,豪雨が発生した場所は梅雨前線帯の南縁付近で,下層に暖湿気流(相当温位350K) が流入し,弱い波動が前線上を通過する条件が重なっていた.

1. はじめに

1986年7月10日, 鹿児島市で豪雨が発生した. 最大1 時間雨量は100 mmを越え,シラス台地で崖崩れによる 大きな災害をもたらした. 被災地は鹿児島市の中央部を 中心とする狭い範囲で,非常に局地的であり,死者18 名,負傷者16名,家屋の全壊(76戸),半壊(20戸)など の被害のほか,中小河川の氾濫による洪水被害も多数発 生した.

第1図は、この豪雨の日雨量分布図である. 最大300 mm以上の降雨量が記録されているが、総雨量のほとん どは15時~17時の2時間にもたらされたものである. そ して人命を伴った崖崩れの発生箇所(図中×印)は総雨 量が多い(強雨セルが通過)ところに集中し、大半が上

- * Case study of the Heavy Rainfall in Kagoshima City on 10 th July 1986.
- ** Seiji Hayakawa, Yoshinori Suzuki, 山口大学 農学部.
- *** Hiroshi Maeda, 長崎海洋気象台.
- **** Yushiro Motoda, 九州大学農学部.

——1986年12月26日受領—— ——1988年10月18日受理——

第1図 降水量分布図 (1986年7月10日09時~7月 11日09時)

1989年4月

述の15時~17時の間に発生した.

この豪雨も、1983年9月6日の福岡市豪雨(早川ら、 1988)と同様に、非常に局地的であった。従って、アメ ダスの観測網では最も強い雨域は引っかからず、しかも 気象台のレーダでもその実態を十分に捕らえることが出 来ず、予測遅れと観測体制の不備とが大きな社会問題と なった。

ここでは鹿児島豪雨の特徴について,総観場とレーダ 解析を中心に福岡市豪雨(1983.9.6)との比較を交えな がら考察を行った.

2. 総観場の状況

2.1 天気概況

第2図は1986年7月10日09時の地上天気図を示す。梅 雨前線は、九州北部を東西にのび、東シナ海北部(五島 西海上)に波動が解析されている。太平洋高気圧は、日

第2図 地上天気図 (1986年7月10日09時)

第3図 雲解析図

本の南海上を西に張り出している.九州南部は,前線に 向かって流入する下層の暖湿気により成層が不安定であ った.また,ルソン島北方のパシー海峡に台風7号があ って,北西に進んでいた.台風の存在は,1983年の福岡 市豪雨の場合と似ている.

2.2 衛星雲画像の特徴

雲解析図(第3図)では、前線の雲域は、多重構造を 示しているが、最南側の Cb を含む雲域は、日本の南岸 沿いに九州北部を横断し、五島西海上の波動付近まで達 していた. この波動の位相は約50km/hr で東進し、15 時頃南九州に達し、21時には四国沖へ進んだ. 雲域は 35~40 km/hr 東進しているが、日中は九州南西海上で次 々に積雲が発生し、発達しながら北東進して(元田ら、 1987)前線の雲域(九州南部)へ流れ込んでいた. 従っ て、波動が陸地にかかり、南西から流入する積雲が合流 するタイミングが問題であるが、地域的には九州南部、 特に九州山地の西側で大雨のポテンシャルが高いと予想 される.

2.3 湿度と風の鉛直時間断面図

鹿児島における湿度と風の鉛直時間断面図を第4図に 示す.10日15時前後は800 mb,600 mb 付近に卓越した 南風成分と800~500 mb に西風成分の弱まりが認めら れ,中層の風の変化でセルの移動も変化した.この風の 変化は,鉛直シアーの変化をもたらし,エコー系の移動 パターンにも影響を及ぼした.

また,この時間帯に弱い波動が前線上を通過している ため,南風成分が強化され下層の強い暖湿気($\theta_e=350$ K)流入がある.この成層は,相当温位でみると,600

第4図 湿度と風の時間断面図(左図:東西成分, 右図:南北成分)

▶天気// 36. 4.

208

mb で 328K, 最下層で 355 K と対流不安定であった. その上, 鹿児島 9 日21時 250 mb に北風成分が強まって おり, 上層に寒気が流れ込んで来ていることを示してい る. 10日 9 時には 500~400 mb まで降下しており, こ れらの条件が重なって豪雨が発生した. パターンの移動 についても, 福岡レーダでは, 12時に東へ 40 km/hr (雲 域の移動と一致), 15時には停滞 (セルは 50°N へ 35 km /hr), 18時には東へ 35 km/hr となっていた.

3. アメダス地上風の特徴

第5図は、12時と15時における地上の風向・風速とこ れから考えられる収束帯を示す.図によれば、12時には 熊本付近から天草にのびる地上のシアーライン(温度の 集中帯でもある)としてみられ、15時には鹿児島北東部 の低気圧性地上風循環を伴って、宮崎北部から鹿児島に のびる線まで南下していた.

15時の風を詳しくみると, 鹿児島市北部の吉野町高層 観測室では西南西で 3 m/s, 上荒田の気象台では北北東 で 0.9 m/s となっており, 風は弱いが, 風向の違いから

第5図 アメダス地上風と収束帯

第6図 地上の温度分布とアメダス地上風 (1986年 7月10日15時)

その中間の城山付近を中心にメソ高気圧の存在が考えら れる.この時間地上の温度場の解析(第6図)では,鹿 児島から北東方向に長さ 50 km,幅 30 km 程度の楕円形 の気温 24°C(周囲は 30°C 前後)の強い降水による冷気 塊が出来ている.すなわち,弱いシアーラインに沿って 線状エコーが配列し,ここは温度傾度の大きいところで もある.

4. レーダエコーの特徴

国見岳にある建設省のレーダが捕らえた強雨エコーの 変化を第7図に示す.解析には,MT.に収録された5分 毎のデータを用いたが,ここでは10分毎の変化を図示し た.建設省のレーダは中心から半径方向に3km,方位方 向に128等分に区切られた領域のデータである.豪雨の 発生した地点は,レーダサイトから20km前後の地点 で,1メッシュほぼ縦・横3km前後であり,探知距離 ぎりぎりに位置することになった福岡や種子島レーダに 比べ分解能はかなり良い.しかもMTには各メッシュ点 の反射強度が入っているため強雨セルとして追跡するこ とが可能であった.

鹿児島市の 災害に 関連した 降雨系は 第7 図における X₁~X₄の4つのエコーによるものである.まず初めに 14時40分頃エコーX₁が現れ14時50分頃最盛時に達す る.次に15時10分頃にエコーX₂が現れ,北北東に進み ながら15時50分頃まで続く.続いて15時50分頃,X₂の 近傍でエコーX₃が現れ16時00分に最も発達し16時20分

第7図 鹿児島市に災害をもたらした降雨系のレーダ・エコーの水平分布, 左最上図の黒丸は災害の発生場所を示す, 等値線は外側: 50~100 mm/hr, 影部: 100~150 mm/hr, 黒塗: 150 mm/hr 以上(1986年7月10日). 資料は建設省国見岳レーダによる.

には衰えるが、16時30分頃に X₄ のエコーが現れ、17時 頃まで持続した。

これから, 鹿児島に災害をもたらした降雨系は14時40 分頃から17時頃まで続いた X_1 から X_4 の4つのエコー によってもたらされたものといえる. エコーの進行方向 は南南西から北北東の方向で福岡市の豪雨例と同様に風 上側に新しいエコーが次々に現れ, ほぼ同じ場所で発達 し, 同じ所に強い雨をもたらし集中豪雨となったもので ある.

第8図は15時30分の強雨エコーと弱エコーの分布を示 す. 降雨域は幅 10~15 km,長さ 40 km の大きさになっ ている.

このように、鹿児島市に災害をもたらした降雨系は、 寿命が約2時間20分でその間に風上側に発生した4つの セルが入れ替わりながらエコー群として系を維持してい た. 最盛時のエコー群は、幅10~15 km,長さ約40 km の大きさに発達し、エコーの組織化の過程やエコー群の 構造は福岡市豪雨(早川ら、1988)と非常に似かよった 特徴がみられた. この点が興味の引かれるところであ

第8図 鹿児島に災害をもたらした降雨系の発達時 のレーダ・エコーの水平分布と第7図に用 いた領域を示す(1986年7月10日)

る.

一方, 鹿児島航空測候所のレーダ資料によれば九州中 部以南に線状の Cb クラスターによるエコーが配列して

▶天気/ 36. 4.

おり、エコー群の南西端が、エコー発生源とすれば、九 州南部に 散在する 線状エコーの 発生源の包絡線は,天 草,牛深付近から,宮崎県南部の油津を結ぶライン上に あり、このラインは14h~18hの間は余り変化しないで 持続していた.また、このラインの南西側 60 km 付近の 鹿児島市付近と志布志湾南部付近を結ぶラインにもエコ ーが存在しており、 梅雨前線帯の 多重構造を 示してい る. この小規模な前線系は, 梅雨前線帯の中で, 傾圧不 安定の場の中で上下層間で密度差により形成されたとす れば,内部重力波が発生すると考えることが出来る。こ こで実測から波長が 90 km (天草・牛深~鹿児島), 位相 速度: 50 km/hr とすれば、周期は1.8時間となる。最盛 期のエコー(強雨)の持続時間もこの位であり、定常波 的な振舞いをするとして, 衰弱するまで3~4周期かか るとみて、5~7時間は停滞していたと考えられる、実 際に、線状エコーの定常的な位置は14h~20hまで続い ていた.

5. 風の鉛直シアーの特徴

福岡と鹿児島における 900~600 mb の風の鉛直シアー を第9図に示す。9時には、エコー域の主体は九州北部 にあり、このときの福岡の風の鉛直シアーは東西走向の パターンとなっており、福岡レーダによるエコーも東西 に配列しており、シアーの走向と合致している。

このエコー域(前線帯)に向かって、南からの移流に よるエコーの配列は、鹿児島の南北走向のシアーと平行 になると考えられるが、この時点では鹿児島付近にエコ ーがなく、また鉛直シアーも弱い.

15時には、900~600 mb の鉛直シアーは強まり、鹿児 島 ではやや 東にかたよった 南北走向の 鉛直シアーとな る. 福岡も同じ傾向を示し、この時間帯にエコーは、風 上側の天草付近と、鹿児島市、志布志湾付近を発生源と する線状エコーが北東方向にそれぞれ配列していた. こ の発生源は,前線帯南縁で地形的に気流が収束し易い地 峡性の所で,しかも,その地形の走向が収束線と同じ で,鉛直シアーの走向と合致していると言う地形の影響 も条件の一つとして考えられる.

この前線上の弱い波動の通過した後には,エコー帯の 後面に弱い北西流の寒気が入り,21時の北東〜南西走向 のパターンに変化して行った.この頃,梅雨前線は九州 中部付近まで南下していた.

すなわち,弱い波動の前面の南側で下層の強い暖湿気 の流入と上層に寒気流入があって15時前後の時間帯に鉛 直シアーが変化してこれらがエコーの配列を支配してい たと思われる.これは福岡市豪雨のケースと非常に良く 似た結果と言え,また Seltzer 他 (1985)の示した鉛直 シアーとの関係とも一致している.

気塊の流跡線による東シナ海からの熱エネルギー 補給についての解析

鹿児島市に10日15時頃流入した下層の気塊が,東シナ 海をどのような経路で渡って来たかを 900 mb の風によ り流跡線を描いて海洋観測船長風丸の資料によって解析 し(第10図),これをもとに東シナ海からの熱エネルギ ー量について簡単な見積を行った。

気塊は相当温位 360K の領域を太平洋高気圧の周辺に 沿って黒潮本流の上を北上しているが,この海域には雲 解析図でも雲はないので海面上極低い層を流入してきた 事が分かる. 薩摩半島の西海上には散乱した積雲の領域 があるところを見ると,成層が少し不安定化しかけてい ることを示す.しかし,この領域では相当温位 355K と 低く,しかも沿岸に低い海面水温域 (水温 24°C,気塊 は 27~28°C の黒潮の上を移動してきている)があって, その上を通過するので対流活動がやや抑制されたとみる

211

ことが出来る.

22

流跡線に沿ってバルク法による熱収支量を見積って降 水量に換算したのが第11図である。

熱収支量は次式を用いて算出した.

顕熱のエネルギー

 $Q_{s} = \rho c_{p} C_{D} (T_{s} - T_{a}) \cdot V_{s}$ 潜熱のエネルギー $Q_{L} = \rho L C_{D} (q_{s} - q_{a}) \cdot V_{s}$ 全収支量 Q=Q_{s} + Q_{L}

ここで, ρ: 空気の密度, C_p: 定圧比熱, C_D: 抵抗係 数, L: 蒸発の潜熱, T_s, q_s: 海面の水温と比湿, T_a, q_a: 海面上の気温と比湿, V_s: 海面上の風速である.

気塊に次々に蓄積される熱収支量は、蒸発・降水量等 で放出されないと仮定している.これによれば、鹿児島 市に達するまでに約70mmの降水量に換算できる膨大 な量が黒潮本流から補給されていた事がわかる.

7.まとめ

1986年7月10日鹿児島市の豪雨について解析された結 果は次の通りである。

1) 総観場からみれば, 鹿児島市豪雨は太平洋高気圧 の周辺部に当り, 福岡市豪雨と同様に気圧の谷に伴う前 線上の弱い波動と南西からの暖湿気流が合流して不安定 場を刺激して豪雨となったものであった。

2) 集中豪雨をもたらしたエコー系は,停滞した一つ の巨大積雲に起因するものではなく,風上側に次々に発 生する新しいセルが古いセルと入れ替わる形で,結果と して組織だった系を長時間維持し,豪雨をもたらした.

そして,最も発達した段階では,内部に4個のセルが 存在し,かつ10~15 km 幅,長さ40 km の大きさに発達 しており,福岡市豪雨 (1983.9.6) とほぼ類似のレーダ ・エコーの水平分布構造を持っていた.

3) 集中豪雨は、レインバンドの走向の変化に伴って 発生した. このレインバンドの変化を風の鉛直シアーの 変化で説明できた. すなわち、レインバンドは鉛直シア ーに平行に形成された.

4) 豪雨が発生する場所は、前線帯の南側であり、下層の暖湿気流が流入する.豪雨は地形の影響もあるが、 前線帯の南縁の成層不安定場に下層の強い暖湿気流入と 前線上の気圧の谷に伴う弱い波動が通過する時に発生している。

5) 鹿児島市に10日15時頃流入した気塊は, 黒潮本流 の極低い層を北上して降水量に見積って約70mmの, 熱収支量を蓄積してきた. なお,本研究の一部は文部省科学研究補助金(自然災 書科学資料災害特別研究「降雨災害をもたらす豪雨の集 中度に関する研究」代表者名古屋大学武田喬男)によっ た.また,レーダ解析と画像処理は九州大学大型計算機 を使わせて頂きました。付記して謝意を表する。

文 献

- 元田雄四郎・早川誠而・鈴木義則・前田宏・木船一 晶,1987:雨の降り方から鹿児島豪雨災害(1986 年7月10日)の特徴,自然災害科学西部地区会報, 4,37-40.
- 早川誠而・鈴木義則・前田宏・元田雄四郎, 1988: 1983年9月6日の福岡市における豪雨の特徴(1) アメダス資料を主とした解析, 天気, 36, 121-126

_, 1988:

- 1983年9月6日の福岡市における豪雨の特徴(2) レーダエコーを主とした解析,天気,36,127-133.
- 坂上 務・早川誠而, 1987: 発達した対流性 レー ダ・エコーの特徴,自然災害特別研究研究成果, No. A-61-3, 86-89.
- Seltzer M.A., R.E. Passarelli and K.A. Emanuel, 1985: The Possible Role of Symmetric Instability in the Formation of Precipitation Bands, J. Atmos. Sci., 42, 2207-2219.

1989年度 日本生命財団研究助成の募集のお知らせ

人間活動と環境保全との調和に関する研究 ――自然と人間の共生への新しい道を求めて――

助成の主旨

日本生命財団は,過去10年間にわたり環境分野の研 究助成を行っており,本年度も標記の課題で公募を行 います.

21世紀の豊かで調和のとれた環境づくりに貢献する 独創的な研究,学際的な研究等ユニークな着想にもと づく研究計画をお持ちの研究者・グループのご応募を 期待します.

研究助成の概要

- ●応募資格は問いませんが意欲的に研究を遂行していただける個人・グループ
- ●選考方法:当財団選考委員会で厳正な選考のうえ、
 9月の理事会にて決定

- ●助成期間:1989年10月から1年間
- ●助成金総額:8,000万円程度(予定)

応募方法

●「応募要項」「申請書」は下記あて郵送用切手同封の 上、ご請求下さい。

なお、「応募要項」「申請書」は5月中旬までにご 請求下さい.

(1部~2部240円, 3部~4部350円) 消費税 分を加算下さい.

●「申請書」の提出期限:1989年5月26日(金)消印ま で

〒541 大阪市東区今橋 3-1-7 日本生命今橋ビル 日本生命財団 研究助成部 電話 (06) 204-4012

1989年4月