鳥海山の深雪地帯における積雪底と土壌表層の

1986/87 温度通年観測*

土屋 巌**

要旨

1986年9月19日~1987年8月16日の間, 鳥海山南斜面の深雪地帯における, 高度約 1450m の雪田植生地 帯に、メモリー型温度計2台を設置して、降雪季節の始まりから融雪終了の季節まで, 積雪底と土壌表層に ついての, 2時間ごとの完全な温度測定の記録を取得した。

これら2シリーズの温度記録には、11か月間の特徴的な天気現象である、秋の初冠雪、根雪の始まり、春の融雪に加えて、2月に発生した顕著な"春一番"の影響を10数 m の深雪の底に認めることができたので、 自然災害、水資源および自然植生と関連した簡単な考察をした。

1. はじめに

日本海沿いの山地には、冬の降雪が大量の積雪となっ て春遅くまで残るものが多く、中には夏から秋にかけて の大量の融雪を経過しても、万年雪となって次の冬を迎 える例もある(土屋、1976)、大量の積雪は、春からの 残雪の季節に、通常の天候推移のもとでは、ゆっくり解 けて流出し、水資源として活用される。しかし、晩冬か ら早春にかけて、日本海を低気圧が北東進するような時 には、しばしば"春一番"と呼ばれる顕著な暖気流入が あり、積雪地帯に雪崩や融雪洪水の発生することがあ る。

もし、真冬から春にかけての積雪内部の温度推移がわ かれば防災対策に利用でき、さらに夏に至るまでの融雪 過程の温度推移がわかれば、水資源管理の面でも、ま た、近年保全対策の必要性が提言されている多雪山地の 生態系保全のためにも有用と考えられる.しかし、従来 の測定方法では、山地の深雪地帯では、非常な困難を伴 うため、道路管理などの特別な機会を利用したわずかな 観測例しかなく、それも長期間は難しく断片的なものに 限定されていた(たとえば、中川ほか、1976).最近、 長期間設置して回収後に測定データをパソコン等によっ

- * Yearlong temperature observations of snow bottom and sub-surface ground during 1986/87 at a deep snow zone on Mt. Chokai.
- ** Iwao Tsuchiya, 香川大学農学部.

-----1989年3月16日受領-----------1989年11月20日受理----- て処理する、メモリー型の温度計が使えるようになった.これを使うと長期間の積雪下温度記録の取得が可能であるが、実施例では保守障害のため通年観測は困難であった(吉田,1986).筆者は、高圧下の水底で作動する高精度メモリー型水温計(離合社,RMT水温計)2 台を、鳥海山南斜面の最深積雪が20mを越す、高度約 1450mの雪田植生地帯に、降雪期前の1986年9月19日 に設置した.翌年の融雪終了後、1987年8月16日に装置 を回収して、積雪底と土壌表層についての、2時間ごとの温度を主とする8000時間の連続記録を得た.

これら2台の RMT 水温計の温度記録は,根雪前お よび消雪後の天気経過を反映しているが,さらに11月~ 7月のほぼ9ヵ月にわたる長い積雪期間に発生したいく つかの天気現象,たとえば2月中旬の顕著な"春一番" に伴った,雨を含んだ暖気の流入や,寒気の復帰,そし て本格的な春の融雪などを反映したパターンを示した. 天気現象の反映については,その一部について速報を発 表したが (Tsuchiya, 1989),ここではその後入手した 関連する気象および水文資料等と照合した全般的解析結 果を報告する.

2. 温度測定装置と観測

使用した RMT 水温計の仕様を第1表に示した. 測 定開始前に,専用のインターフェースにより測定時間間 隔を定め,茶筒状本体のセンサー取付部の反対側のフタ をねじこむことによって作動開始になる. データ 容量 4000の場合,120分間隔にすると8000時間の連続記録が, 鳥海山の深雪地帯における積雪底と土壌表層の 1986/87 温度通年観測

第1表 RMT 水温計(離合社)の仕様

セ 潤 分 精 メ 定 解 単 り 間 赤 町 町 町 町 町 町 町 町 町 町 町 町 町 町 町 町 町 町	自金抵抗測温体 - 5 ~+50°C (変更可能) 0.02°C ±0.05°C 4000 データ (1988年には16000に増加) 1~127分 約2年 約50気圧
耐圧性能	約50気圧
重量	550 g
精 を ま で 間 で し 一 隔 一 耐 正 性 能 能 重 重 二 二 二 二 二 二 二 売 二 つ 二 二 二 売 二 つ 二 売 二 つ 二 売 売 一 一 二 二 売 二 一 売 一 一 二 一 売 一 一 売 一 一 一 一 一 一 一 一 一 一 一 一 一	±0.05°C 4000データ(1988年には16000に増加 1~127分 約2年 約50気圧 550g

本体内の IC に蓄積される.

観測終了後は、同じインターフェースのデータ転送機 能を使って、パソコンにデータを蓄積してから表や図の 形で出力する.データ処理の標準ソフトはインターフェ ースの付属品になっている.

観測地点は第1図に示したように、鳥海山南斜面の中 腹,高度約1450mの場所である.冬の季節風風下斜面 になるため、吹きだまり型の積雪は厚く堆積し、最深部 では30mを越すことが多くなるが、RMT 水温計を設 置した場所では25m前後である.融雪量の年平均は約 30mであり、最深部では越年性残雪(万年雪とも言う) が氷化して小規模な氷河現象を示す(土屋,1977-78; Tsuchiya,1984). RMT 水温計の設置場所は、この越 年性残雪に隣接した、30~40度の斜面で、浅い圏谷地形 の谷壁に相当する場所であり、短い無雪期間(7月下旬 ~10月中旬であるが年々変動が大きく、日数は30~90日 になると思われる.)に生育する雪田植生地帯である(土 屋,1984).

測定間隔を120分に設定した RMT 水温計2台は, 1986年9月19日9時を作動開始時刻にした後,測定地の 残雪融雪部で13時の測温によりタイムマークにしたうえ で,14時ごろに,1台のセンサーは根雪期間の積雪底の 温度が測定できるように,センサーを土から約3 cm 出 し,1台は土壌表層を測定できるように約3 cm の土中 に置き,記録部となる本体はそれより深くなるようにし て,それぞれ土中に埋めた.2台のセンサー間の水平距 離は約1m である.

1987年8月16日14時ごろ,2台を回収して,それぞれ のセンサーを近接して室内に置き,夜間は同じ温度環境 のもとにあるようにした.翌日,車で輸送し,数日後東 京においてメーカーの開発担当者立合の上,点検を済ま して全記録をパソコンに転送し,観測データ表とグラフ

第1図 メモリー型温度計設置場所(A)周辺の地形と積雪分布(積雪深(m)は1974年4月6日の航空写真測量による算定値で豪雪年のものであり、A地点は観測基準線POの西約30m).

を作成した.

3. 測定記録と気象現象

第2~6図と第11~13図は,RMT 水温計による8000 時間の全記録を図化したものであるが,温度日変化の大 きい無雪期間と変化の小さい根雪期間とは,それぞれ温 度目盛の尺度を変えて示した。9月中旬から8月中旬ま での11ヵ月の欠測なしの2時間ごとの連続記録であり, 季節推移の特色を示すいくつかの気象現象を反映した記 録を多数認めたので,その主なものについて説明する.

3.1 秋の時雨型天気の季節

第2図は9月19日9時から10月31日1時までの記録で ある.秋の長雨,移動性高気圧の通過に伴う好天,そして 冬にはいる前の時雨型の天気と一時的な積雪を伴う寒気

52

第2図 RMT 水温計による接地気層(または積雪 底)(上)と土壌表層(下)の記録, 1986 年9月19日9時~10月31日1時(縦軸は温 度(°C), 横軸は日時で時刻を記録の100 番目ごとに表示).

の流入という、日々の天気推移を忠実に反映している.

上図は無雪の期間には,接地気層の温度を示したこと になるが,はじめの雨天または曇天の続いている時には 温度の日変化は小さく,9月24日の天候回復とともに日 較差が増し,9月27日に最大(03時0.73°C,11時30.84 °C)になっている.下図の土壌表層についても,同様 の傾向が見られるが,日較差は小さい.これは移動性高 気圧による好天を反映したものであるが,10月2日以後 には晴天と交代する時雨型の天気を含む悪天の数が増 え,10月15日過ぎからは寒気の流入が顕著になり,17日 は鳥海山の初冠雪(酒田測候所の観測)となったことを それぞれ反映している.

17日は平地の秋田でも初雪を観測し,平年の11月14日 よりかなり早かった.しかし,観測地点の積雪はあまり 多くはなく,25日以後は雪の消えた地表部分の多くなっ たことが,接地気層と土壌表層の両者で,顕著な温度の 日変化を示しことによって推定できる.

接地気層の温度記録が積雪底の記録に交代した時間は 明確ではないが、16日23時の0.79°C 以後低下を続け、 日変化量も急に小さくなっているので、16日夜半から17 日にかけてと思われる.土壌表層では積雪底よりも常に

第3図 RMT 水温計による積雪底(または接地気層)(上)と土壌表層(下)の記録, 1986 年10月31日1時~12月11日17時(第2図と同様,ただし温度目盛の間隔は変更).

高温であるが, 1986/87 の全観測期間を通しての低温記 録は10月23日23時の 0.21°C であり, 積雪底では24日 3 時の -0.42°C が11月6日までのうちでの低極であった.

3.2 積雪の断続と根雪の始まり

第3図は10月31日1時から12月11日17時までの記録で ある.平地の初雪が早かった割には、暖冬型の天候が多 く,接地気層温度記録が、完全な根雪の積雪底温度の記 録になるのは、その日変化の縮小および土壌表層にも認 められた顕著な日変化最終記録の11月9日以後であると 推定できる.

11月5~7日に通過した移動性高気圧のもとで, 顕著 な夜間放射冷却によると思われる低温が7日早朝に記録 されているが,接地気層の5時の -1.85°C は全観測 期間を通しての最低であり,土壌表層では3時に0.27 °C の低極を示した.根雪の期間にはいると,土壌表層 では小幅の脈動的変動を示しながらゆっくり低下してゆ くが,12月11日に0.6°C 以上である.積雪底では11月 11日に記録上の氷点以下になり,その後ゆるやかに定常 的低下を示し,外気温の日変化や日々変動の影響は現わ れていない.

1990年2月

第4図 RMT 水温計による積雪底(上)と土壌表 層(下)の記録, 1986年12月11日17時~ 1987年1月22日9時(第2図と同様,ただ し温度目盛の間隔は変更).

第5図 RMT 水温計による積雪底(上)と土壌表
 層(下)の記録, 1987年1月22日9時~
 1987年3月5日1時(第2図と同様ただし
 温度目盛の間隔は変更.)

3.3 大量積雪の季節

第4図は12月11日17時から翌年1月22日9時までの記 録である.積雪の増加が最も大きくなる期間であるが, 積雪底の温度は氷点下の状態でほぼ定常的に0.0013°C/ 日の割合で低下し,日変化および日々変動の振幅は小さ く,0.04°C 以内のことが多い.土壌表層では平均的に はゆるやかな低下であるが,振幅はやや大きく0.08°C 前後の脈動的変動を示している.

天気推移は12月は暖冬傾向,1月前半には冬型が卓越 したと説明されているが(気象年鑑,気象要覧),積雪 底の温度低下傾度も1月9日から増加して0.005°C/日 になった.しかし,土壌表層では12月24~28日の低下傾 度が大きく,積雪底と地中からのそれぞれの熱的効果の 複雑なことを示唆している.

3.4 "春一番"の暖気およびその後の寒気と暖気の流 入の影響

第5図と第6図に1月22日9時から4月15日17時まで の記録を示した.深雪と顕著な天気変化との特色ある関 係の発生した期間である.

2月11日21時に、今まで引き続いて一様な 傾度で、 -0.26°Cになっていた積雪底の温度は23時に-0.16°C に昇温し、その後も短時間の間に昇温を続けて13日9時

*天気// 37.2.

第7図 1987年の"春一番"の天気図 (気象年鑑より).

第8図 1987年2~3月の日本各地の日平均気温推 移(気象要覧より).

には -0.09°C になり, その後は再びゆるやかに降温 した. 後述の融雪最盛期の4月中旬から7月22日の消雪 直前までに積雪底は -0.09~-0.07°C を記録してい たことと照合すると, 2月13日9時を中心とする何時間 かは,積雪底が融雪に近い状態にあったことを示してい る.

第7図に示した天気図によって、この冬の終り近くに 発生した"春一番"と呼ばれる顕著な暖気の流入を伴う 低気圧が、日本海を北東進したのが2月11日であること がわかる。

第8図の日本各地の地上気温の2~3月の推移,およ び第9図の暖気流入期を中心にした秋田と仙台の850mb 面温度推移によると,2月11日前後の"春一番"の暖気

第9図 仙台と秋田における,1987年2月と3月の 顕著な暖気流入期の 850 mb 温度推移.

流入の積雪に与えた影響はかなり大きい可能性がある.

積雪底の温度急上昇との関係を考察する.積雪は空気 の含有量が増えると熱伝導率は低下するので,最も高い 熱伝導率の氷について適用した温度伝達時間 t の実験 式,

t=ρ*ca*²/2 *κ* (1) による, 表面の 温度 1°C の変化が 10 m 下に 伝わる

446日よりも、大幅に長くなる。したがって、第5図に 示したような早い温度上昇は融雪水を含む雨水が到達し たか、または接近したことによって発生可能になる。こ こで、実験式の ρ は氷の密度、c が氷の比熱、c が熱 伝導率、a が深さ単位であり、0.5 m の場合 Diemand

1990年2月

第10図 月光川ダムにおける日平均気温(°C),日流出高(mm)および日降水量 (mm)の推移,1987年2月1日~4月15日。

(1984)の与えたtの数値は1.14日であり、10mでは
446日になるが、密度の高い積雪でもρcは氷に近づき、
κは氷よりかなり小さいのでtはさらに長くなる。

11日の"春一番"に際して、4~5°Cの暖気が観測地 点周辺に流入しただけでなく、かなり大量の雨が降った ことが、酒田 54.0 mm, 秋田 57.5 mm の記録によっ て推定できる."春一番"に伴った大量の暖い雨が少な くともその一部が、推定積雪深約 15 m (Tsuchiya, 1988)の積雪底またはその近くにまで、融雪水となって 到達したのが、前述の積雪底急昇温の原因であったと考 えられる.しかし、水と雪が共存していた可能性のある 期間は比較的短いものであったと推定できる."春一番" に続く寒気流入がかなり強く、降雪量も多く、第10図の 月光川ダム流出経過等の記録によっても、降水量で期待 できる流出量より少なくなっていることがひとつの根拠 である.

このダムの流出の特色については、観測地に隣接した 深雪地帯を流域にしており、観測地の積雪推移と同様の 水文経過を反映していると言える(土屋,1983). ダム の流出記録から判断すると,11日の"春一番"に伴う暖 気と雨は、大量の水を深雪地帯に発生させたが、積雪層 内を移動または滞留中に、次の寒気によって積雪の内部 に固定されたものと推定できる.

暖気流入は、その後も何回かあり、第9図によると3

月24日は 8°C 前後になり,雨も酒田で 22.0 mm,秋田で 22.5 mm 降っている.しかし,積雪底の温度にその影響は認められず,他方,ダム流出量では11日の "春一番"の場合より流量が多く,融雪水の割合が大幅に増えたことがわかる.積雪底温度観測地点とダムとの高度 差約 1200m の間の春の融雪経過の違いを反映したもの と思われる.

3.5 融雪最盛期から消雪まで

第6図に認められるように、4月7日から8日にかけ て、積雪底と土壌表層の温度は、共に"春一番"の場合 と同じように急昇したが、その後は低下することなく、 特に積雪底では、7月22日の消雪直前まで、前半は -0.09°C、後半は -0.07°C を中心とするほぼ一様な 温度を記録した.土壌表層では4月1日に発現した根雪 期間中の低極 0.37°C を中心とする数日間よりも、高 い温度で経過しているが、日変化および日々変動の幅は 大きめであり、積雪底と土壌表層との熱的相互作用の非 定常性を示唆していることが、第11図と第12図に第6図 を照合することで理解できる.

鳥海山南斜面の残雪からの融雪流出は5月になると, 天気の影響による日変化や日々変動の幅が非常に大きい が(土屋,1983),積雪底の温度記録でも5月5日以降 上向きの昇温信号が不規則に発生し,土壌表層の温度変 動振幅がやや増大している.

▶天気// 37. 2.

 第11図 RMT 水温計による積雪底(上)と土壌表 層(下)の記録. 1987年4月15日17時~ 1987年5月27日9時(第2図と同様,ただ し温度目盛の間隔は変更.)

 第12図 RMT 水温計による積雪底(上)と土壌表 層(下)の記録, 1987年5月27日9時~
 1987年7月8日1時(第2図と同様,ただし温度目盛の間隔は変更.)

第13図 RMT 水温計による積雪底(または接地気層(上)と土壌表層(下)の記録.1987年 7月8日1時~1987年8月18日17時(第2 図と同様,ただし温度目盛の間隔は変更. なお,8月16日15時以降は回収輸送期間の 記録.)

積雪底と土壌表層に際立った違いの発生したのは,消 雪の時を中心とする2日間である.第13図に認められる ように,積雪底のほうが昇温は早く始まるが,上昇傾度 は数時間はゆるやかである.他方,土壌表層は1日以上 遅れた19時ごろからであるが,夜間にもかかわらず上昇 傾度は大きい.

消雪状態の推定できるのは、7月22日13時前後から21 時ごろまでの8時間であるが、地表に3cmほど突出た センサーの記録は、0.02°Cから1.13°Cへとゆっく り上昇している.この期間大量の融雪水が、観測地点の 雪田植生の斜面を流下していたと思われる.土壌表層で は、積雪下と同じ温度状態は23日19時まで続いており、 融雪水の流下が終ると直ちに昇温を開始したものと見ら れる.

消雪開始から2日ほど過ぎると、その後は盛夏の季節 の天気推移を反映した、接地気層と土壌表層の温度記録 であり、すぐ近くの斜面の下方に存在している大量の越 年性残雪の影響は現われていない.

1990年2月

57

136

4. 考察

比較的低高度に多数の越年性残雪が存在するような, 日本海沿いの山地深雪地帯における,季節推移に伴う積 雪の温度構造を解明するひとつの方法として,メモリー 型温度計2台を設置した.従来の技術では,事実上不可 能であった深雪地の長期継続温度記録が得られたので, 深雪に関連した,雪崩,融雪出水等の自然災害に関連す るもの,水資源に関連するもの,および深雪地帯の植生 保全に関連する問題のいくつかにとって,有用な知見と なり得るものを,季節推移に伴う特徴的な気象現象と照 合しながら考察してみたい.

第5図と第6図に示された"春一番"と春の後半に現 われる積雪と水の共存状態に至るまでの天気推移が,深 雪の融雪に与えた影響は,第10図のダム流出記録によっ て吟味できる.融雪流出は暖い空気と雨とを熱源とする 雪(氷)から水への相の変化であるが,地表水になって から下流のダム湖に至るまでの時間が長ければ,途中で 次の寒気によって再凍結し積雪層内に固定されることに なる.2月11日の"春一番"以後の天気推移は,3月上 旬まで,そのような影響をもたらし,月光川ダム(高度 193 m)への流入は,異常出水といえるほどにはならな かったと解釈できる.

3月中旬以後は、ダム地点の平均気温は 5°C を越す 日が増え、強い寒気の流入もなく、気温上昇による融雪 流出の増加に降雨による流出増が加わった形になってい る.第6図の積雪底の温度は4月初旬まで下降してお り、3月後半の強い暖気流入の影響は、2月後半に増加 した積雪を含めた深雪の中に吸収された形になってい る.このことは、積雪水量の多いダム集水域上流部の融 雪出水を遅らせ、ダム地点での異常出水発生の可能性を 低めたことを推定させる。山の積雪は天然のダムである という概念を、流出の記録と積雪底の温度によって説明 したことになるが、これはなだれの発生の少ない山地で は、深雪が水資源の面だけでなく、防災上プラスになる 場合もあることを示ししている.

深雪地帯には、高山景観で重要な高山植物を多数含む 雪田植生が見られるが、同じ高山植物(種類の違うもの が多い)の風衝地植生と全く違う土壌温度環境になって いることがわかった。風衝地では吉田(1986)の測定に よると、厳冬期数 10 cm 程度の積雪と消雪が繰返され て、地表は凍結し -10°C 以下になった後、積雪の増 加とともに昇温して4月中旬に 0°C 以上になってい る. 今回の雪田植生地帯では,雪が積ったり消えたりの 10月23日における 0.21°C が全観測期間を通じての最 低であり,0.4~0.5°C の期間が非常に長い.しかし, 融雪が遅れるため,10°C 以上の生長期間は風衝地植生 に比べてかなり短い. 植生保護に必要な生育環境を知る ためにも,このような違いを理解 することが 重要 であ る.

謝辞

月光川ダムの日報および年表の利用については、山形 県河川課の御配慮を頂き、温度計記録の出力表示につい ては㈱離合社の開発担当者の御協力を得た. これらの方 々に深く感謝します.

参考文献

- Diemand, D., 1984: Iceberg temperatures in the North Atlantic—Theoretical and measured. Cold Regions Sci. Tech., 9, 171–178.
- 中川正之・川田邦夫・岡部俊夫・清水弘・秋田谷英 次,1976: 立山の積雪の性質の研究,雪氷,38, 157-164.
- 土屋 厳, 1976: 飯豊山・月山・鳥海山の大量積雪 および小規模氷河現象発生についての序報, 雪 氷, 38, 178-187.
- , 1977-78: 鳥海山貝形小氷河の雪氷 気 候
 学的研究 (1)~(3), 雪氷, 39, 65-76; 40, 1-9, 10-21.
- -----, 1983:小さなダムの流量報告に基づく鳥 海山の残雪流出解析,天気, 30, 590-594.
- 1984: リモートセンシングによる残雪及 び雪田植生の分布解析,国立公害研究所研究報 告,第71号,1-102.
- Tsuchiya, I., 1984: A very small glacier on Mt. Chokai, Japan, 1972–1981. Geogr. Rev. Japan, 57 (B), 142–153.
- 吉田直隆, 1986: 高山風衝地の植物群落をとりまく 温度的環境一木曽駒ヶ岳における地温観測の結果 から,長野県植物研究会誌,第19号,10-13.