台風8922とその北側を進んだメソ寒冷前線に伴う

南関東の下層風の特徴*

藤 部 文 昭*1·田 畑 明*2·赤 枝 健 治*3

要 旨

台風8922が房総半島を北東進した際の下層風の特徴を,その北側を進んだメソスケールの寒冷前線に注目しなが ら解析した.このメソ前線は当初は薄い寒気を伴うものであったが,台風が近づくとともに寒気の厚さが増して強 いシアを伴い,その後面にはごく低い高度に 30 ms⁻¹の風速極大が存在した.この前線付近では台風本来の渦状の 気流は著しく変形され,弱風から強風への不連続的移行や,台風経路の左側における時計方向の風向回転など,台 風通過時としては異例の変化が認められた.また,前線の後方には大きな上昇流が存在し,幅 30~40 km の強雨帯 が現れた.

1. はじめに

台風が本州に近づくとき,前線帯が強化されていく ことが多い.しかし多くの場合,このような前線強化 はマクロな視点から捉えられる傾向があり(「前線が活 発化して各地で大雨が降る」というような見方),台風 の中心付近の下層風と前線との関連に目が向けられる ことは少ないようである.

一方,古い文献の中にはもう少しミクロな視点から 台風の中心付近におけるメソスケールの前線(不連続 線)を記述したものが見受けられる。例えば,台風接 近時に関東平野に大雨をもたらす温暖前線は戦前から 記述されている(大谷・寺田,1934;大谷・曽根,1937 など)ほか,大型台風の後面を進んだ寒冷前線の報告 例がある(内海・中沢,1956;蔵重・奥山,1965など). このほか,昭和20~30年代の台風に関する報告(中央 気象台彙報,気象庁技術報告など)の中で,台風の中 心付近に見られるいろいろなタイプの"前線"や"シ

- * Features of surface wind fields in the south Kanto plain during the passage of a tropical storm and a mesoscale cold front in its northern portion.
- *1 Fumiaki Fujibe, 気象研究所予報研究部.
- *2 Akira Tabata, 気象庁予報部予報課.
- *3 Kenji Akaeda, 気象研究所台風研究部.

----1995年1月20日受領-----

—1995年5月1日受理——

© 1995 日本気象学会

アライン"が描かれている。これらの場合、台風の中 心付近の気流が非対称化し、強い水平シアや停滞性の 強雨域を伴うのが特徴である。

最近では、アメダス等を使った地上風解析(藤部, 1992, 1993)や、ドップラーレーダーを使った降雨系 の解析(Sakakibara et al., 1985;岡村・田畑, 1987) において、台風の強風域内に存在するメソ前線が扱わ れている.これらの前線は一般の温帯低気圧に伴って はめったに見られないほどシャープであり、著しい強 風や大雨を伴う傾向がある点で、防災上の観点から無 視できない存在である.近年ではこのテーマの研究は 比較的少なく、メソ現象についての研究の進展に取り 残されているような観があるが、現象の実態について さらに調査を積み重ねることが望まれる.

今回は、こうしたメソ前線の1例として、房総半島 を通った台風8922の事例(1989年9月20日)を取り上げ る.この場合には、台風の北側をメソスケールの寒冷 前線が東進し、その通過の際に房総半島北部で強い北 風が吹いたのが特徴である。このとき成田空港では、 気象研究所の3cmドップラーレーダーによる観測が 行われており、下層の特異な風速分布が捉えられた. これは台風の中心付近のメソ前線を観測した数少ない 資料である。本報告では、このほかに気象官署の自記 記録やアメダス資料などを使い、台風の接近から通過 までの前線の振舞と下層風の特徴を記述する.

なお本稿で言う"メソスケール前線""メソ前線"と

第1図 1989年9月19日21時の総観状況.850 hPa
の風を矢羽根で表し,短い羽根は2.5 ms⁻¹,長い羽根は5 ms⁻¹,○は無風.850 hPaの相当温位を実線で5Kごとに示す.500 hPaの等高線を破線で120 mごとに示す.台風8922の地上経路を点線で,中心を☆で示す.第2図の領域を点線で 囲んで示す.

は、アメダス等で定義される幅数 10 km 以下の温度傾 度集中帯を表す語であり、簡便さのため誤解のおそれ がない場合には適宜"メソ"を外す.また"メソ前線" とは言っても、本稿で扱う例は総観場の前線帯の中に 現れたものであり、総観規模前線と無関係の存在では ないことを断っておきたい.

時刻はすべて日本時間(中央標準時=JST)である.

2. 台風接近に先立つ関東付近のメソα場と地上 風系

- **2.1** 本州中部のメソ α 状況
- 第1図は19日21時の総観状況を示す。台風8922は小

第2図 19日21時の本州中部の地上気象状態.風を矢羽根で表し,長い羽根は2ms⁻¹,旗は10ms⁻¹.気温を実線で表し,等温線は2℃ごと(5 Kkm⁻¹の高さ補正をした値).海面気圧を破線で表し,等圧線は2hPaごと.斜線域は前1時間降水量が1mm以上,網状の斜線域は4 mm以上の領域.第4,6 図の領域を点線で囲んで示す.

型で、日本海から南へ延びるトラフに包まれるように 九州〜四国〜本州の南岸を 60〜70 kmh⁻¹ で東北東へ 進んだ. 850 hPa では、本州〜日本海は南東-北西方向 に相当温位(*θe*)の傾度があり、緩やかな前線帯に なっていた.

第2図は21時の本州中部〜四国の地上状態を示す. 台風の中心から 200 km 程度の範囲には、これを取り 巻く渦状の風が見られる。一方、紀伊半島から東海・ 関東にかけてメソ前線が存在し、数10km以内の幅に 5℃程度の気温差がある。このメソ前線は、本州付近 をゆっくりと南下した寒冷前線帯に付随するものであ り、Fuiibe (1991) は18日から19日にかけて本州中部で 見られたメソ前線の日変化的振舞を記述している。19 日の昼間にメソ前線が中部山岳を南下した際には、後 面(北側)に強い雨域が存在し,その通過は気温の急 降下によって明瞭に定義できる。この間、前線通過の 等時線は観測点の標高(400~1300 m)に関係なくな めらかな形をしており、個々の山脈の影響は認められ ないので、メソ前線の北側の寒気は少なくとも 1 km 程度の厚さを持っていたと考えられる.しかし,19日 の夕方以降は前線北側の雨が昼間ほど強くなくなると ともに、前線の振舞に山の影響が現れ始め、紀伊半島 や中部山岳の南東側では気温低下が遅れた. これは,

"天気" 42. 9.

第4図 関東平野における台風とメソ前線の移 動状況、メソ前線(22°Cの等温線)の 毎時の位置を実線で表し、20日02時ま では細線,03時以後は太線で示す。台 風中心の経路を点線で表し、04~06時 の中心位置を+で示す.最低海面気圧 を破線で2hPa ごとに示し,経路付近 の4地点については実測値を↑で示 す. 斜線域は海抜 600 m 以上, 網状の 斜線域は 1200 m 以上の領域. ●は地 上気象官署で, TK=東京, YK=横浜, CB=千葉, CH=銚子, OS=大島, TY=館山, KT=勝浦. 他に, NR=成 田空港,TN=館野,TS=筑波山,第 10図の領域を点線で囲んで示す.

寒気が薄くなったことを示唆する.

第3図は19日21時と20日03時の館野のゾンデ観測結 果を示す.21時には対流圏全層を南西風が吹き,高さ 7kmまで湿っていた(相対湿度60~90%).この状態は 03時も変わらず,相対湿度60%以上の層は高さ10km まで達した.一方,最下層には03時になって北風と寒 気層が現れている.これは上記のメソ前線に伴うもの で,03時には前線の先端は館野の南50kmまで達して いた(第4図参照).しかし,北風と寒気の厚さは200 m程度しかなく,その上に数100mの安定層をはさん で南風層に変わっていた.また,館野より約20km北 の筑波山(観測点の標高868m)では,04時まで一貫 して南風が続いていた.これらのことは,前線北側の 寒気がごく薄かったことを示している.

2.2 関東平野におけるメソ前線の振舞

第5図 20日02時30分のレーダーエコー合成図 (東京・富士山・名古屋・新潟).

第4図は関東平野における台風経路と最低気圧,お よびメソ前線の移動状況を示したものである.ここで はメソ前線をアメダスと気象官署の自記記録における 地上風と気温の不連続で定義しており,第4図では 22°Cの等温線をその位置の指標にしている.前線は19 日の夕方以降,平均20kmh⁻¹程度の速さで関東平野 を南下し,20日の未明には東京湾付近に達した.一方, 台風は20日05時から06時前にかけて房総半島を北東へ 進み,そのときの中心気圧は985hPa程度であった. これとともに,前線はそのすぐ北側を南北に立つよう にして東進しながら太平洋へ抜けた.

第5図は20日02時30分のレーダーエコー図である. 台風の中心は渦状のエコーの中心として容易に識別で き(第5図のC),その北〜北東側には東西幅200km 程度の⊿形の降雨域があった(以後"台風北側の降雨 帯"あるいは"台風の降雨帯"と言う).関東平野はま だ大部分がこの降雨域の外にあったが,前線に沿って エコーが点在し(A,B),このうちBは比較的強い雨 域であった.Bは19日21時ごろから夜半過ぎにかけて 関東平野の中部を東進し,その際には地点によって30 mmh⁻¹を超す雨が降った.

第6図は20日00~06時(01時を除く)のアメダスに よる関東平野の地上風・気温・降水強度を示す。00時 には上記Bの雨域が平野の中央にあり,前線は雨域に 沿って東京湾の北側で南東へ突き出す形になってい る。この雨域のもとでは北西風が強まり,その東側に は反時計回りの渦状の気流が現れている。これは雨域 で寒気が供給され,前線の南下を促進したことを示唆

第6図 20日00時および02~06時のアメダスによる風・気温・降水強度分布.図の描きかたは第2図と同じ, ただし細かい網状斜線は前1時間降水量が16mm以上の領域を示す.

第7図 成田空港の自記記録(10 kt=5.1 ms⁻¹).

するが、前線と雨とはミクロには対応せず、雨がない 状態のまま前線が通った地点も少なくない(例えば第 7図の場合).従って、仮に降雨による冷却が寒気の供 給源の1つであったとしても、寒気層は全体として 個々の雲よりも大きいスケールを持っていたことが分 かる、その後02時には雨域は東海上へ抜け、前線は東 京湾の中部を通ってほぼまっすぐに東北東-西南西に 延び,その北側の地上風向は北東になった.

第7図は前線通過時の変化の例として成田の自記記 録を示す.前線の通過は00時50分の気温の急降下で明 瞭に識別できる.気温は最初の5分間で2°C程度,1 時間では4°C程度下がり,これに伴って1hPa弱の気 圧上昇があったように見える.これと上記の気温変化 量に静水圧の式を当てはめると,寒気の厚さは数100 m と推定される.一方,風向は気温の急降下と同時に 南南西から西北西~北西に変わったが,風速は前線通 過の直後に一時的に20 kt (=10 ms⁻¹)近くまで強 まったものの,その前後は10 kt (=5 ms⁻¹)以下で あった.従って,メソ前線はシャープではあるが強風 を伴うものではなかったことがうかがえる.他の官署 でも,前線通過時の変化は成田とほぼ同様であった.

第8図 04時と05時の海面気圧と水平発散・渦度分布.気圧を破線で表し、996 hPa 以上の等圧線は1hPa ごと、それ以下の等圧線は2hPa ごとに示す.水平発散を実線で表し、単位は10⁻⁴s⁻¹.
縦線は渦度が2×10⁻⁴s⁻¹以上の領域、点彩は渦度が負の領域を示す. 鎖線はメソ前線位置(22°Cの等温線).風の記号は第2図と同じ.

3. 台風接近~通過時の地上風の特徴

3.1 台風接近に伴うメソ前線の変化

第5~6図に見られるように、02時を過ぎると台風 北側の降雨域が関東平野の西部にかかり始め、その東 端は03時には東京付近、04時には千葉付近まで達した. この降雨域のもとでは北~北西風が強まり、04時には 東京で風速が10 ms⁻¹を超えた。一方、房総半島南部 では南風が強まり、メソ前線はこの南風と北~北西風 との境界として大きな風速差を持つようになった。こ れ以降、メソ前線の後面数10 kmの部分は台風の降雨 域の中でも特に雨の強い場所(1時間降水量16 mm 以 上)になった。

図は省くが、筑波山では04時ごろに強雨開始ととも に風向が南から北に変わり、気温は50分間で4℃下 がった.これは、上記の北〜北西風がそれまでの北東 風よりも厚い寒気を伴ったことを示している.

04時の関東平野の地上風は、①上記の北〜北西風, ②房総半島北部〜霞ヶ浦周辺の北東風、③房総半島南 部の南風の3者から成り立っていて、これらは全体と して東京湾北部を中心とする低気圧性の渦を成してい た(第6図).地上気温は①と②の領域は20℃以下、③ の領域は24〜25℃であり、①②と③との境界がメソ前 線として認識できる.しかし2.1節で示したように、② の北東風はごく薄く、その数100 m上空には南風が吹 いていた、上記の筑波山の変化は、①の北〜北西風が この南風との間にシアラインを作りつつ東へ広がった ことを示しており、このことは成田のドップラーレー ダー資料からも確認できる。

3.2 前線付近の地上風と気圧の分布

04時以降,台風が相模湾〜房総半島を通る際には, ①の北〜北西風と③の南風はさらに強まり,メソ前線 はこれらの境界として走向が南北方向へと変わって いった(第4図,第6図).また,③の南風が強まるに つれ,②と③の境界は一時的にやや北上した(言い換 えると,温暖前線のように振舞った).一方,台風を取 り巻く渦状の気流はその中心から数10km以内では かろうじて認められるものの,房総半島の地上風は前 線に伴うシアをより強く反映した(第6図の04,05時 の状態).この場合,前線の東側を吹く南風は台風の中 心から離れる方向を向き,前線の西側の北〜北西風は 台風中心を左前方に見るように吹いていて,どちらも 台風の渦とは違う風向の風であった.このように房総 半島では,メソ前線のシアによって台風本来の渦状の 気流は著しく変形されていた.

第8図は04時と05時の海面気圧と,水平発散・鉛直 渦度の分布を求めたものである.気圧は,気象官署の 観測値のほか自記記録を参考にして推定したものであ るが,その空間分解能には限界があることを念頭に置 く必要がある.また発散と渦度は,アメダスの地上風 を機械的に内挿して求めたものであり,その際に台風

第9図 成田空港・銚子・館山・横浜の自記記録. 風速の単位はkt(≒0.51 ms⁻¹)とms⁻¹ が混ざっているが、スケールは合うよう にしてある。

の位置などとの整合性は考慮されていない. 図による と,前線付近はトラフになっていたものの,台風の中 心のまわりの等圧線はほぼ円形を保っていたようであ る.一方,前線付近は収束と正渦度の極大域であり, その後面(北西側)数10 km離れたところには発散と 負渦度の領域になっている.これらの収束・発散域の 間は,アメダスで見た幅数10 kmの強雨域(第6図) に当たる.言い換えると,幅数10 kmの強雨帯をはさ んで収束と発散のペアが存在していたことがうかがえ る.

なお、岡村ら(1990)は台風8922の北西側に現れた

pressure dip を指摘している。気象官署の自記記録か ら見ると, pressure dip は05時には相模平野付近(第 8図の~~~)にあったと推定され,この位置は台風北 側の降雨域の西端に当たる。今回はこの現象について は詳しく調べなかったが,台風の降雨域とメソ前線の 移動速度が異なること(3.4節で後述)から見て,前線 と pressure dip とは一応独立した現象であろうと考 えられる。

NR と M₂-M₁ で示す.

第14図 a, b の投影面をそれぞれ N₂-

3.3 地上風の時間変化

第9図は、成田・銚子・館山・横浜における台風通 過時の自記記録を示す、館山では風向は05時前後の短 時間に南から北西へ急変し、風速はこの時刻を境とし てほぼ対称な山型の変化をした、同様の変化は大島や 勝浦でも見られた、その際、大島では 984.7 hPa の最 低気圧と 45 ms⁻¹ の瞬間風速,館山と勝浦でも 987.5 hPa の最低気圧と 35 ms⁻¹前後の瞬間風速が観測され ている、これらは台風経路の直下における典型的な変 化であり、台風が著しい強風を伴う鋭い中心を維持し ていたことを示している、一方、横浜では風向はほぼ 一貫して北寄りで、風速はなだらかな高原状の時間変

"天気"42.9.

第11図 20日04時45分のレーダーエコー合成図.

化をした、東京でも同様の変化が現れた、これは台風 経路の左側(北西側)における典型的な状況である。

これに対して,成田と銚子では風速数 ms⁻¹ の弱風 状態から短時間(10~20分間)に 20~30 ms⁻¹の強風 へ移行しており、台風通過時の風速変化としては異例 であった、これは、台風の強風域内にメソ前線に伴う シャープなシアがあったことを反映する、このうち成 田では、00時50分の前線通過以後、北東風のもとで気 温20°C前後の状態が続いていたが、04時30分以後しだ いに風向が南東へ変わり、気温が上昇した。このあと、 05時過ぎに強雨が始まるとともに風向は北に変わり、 気温の急降下と風速の急増が起こった。これらの変化 は、成田が一時的に南風の領域にはいった(3.1節の書 き方で言うと②の範囲から③の範囲へ移行した)後, 前線の通過とともにその後面の強い北風が吹き出した (①の範囲にはいった)ことを表している。銚子でも, 成田と同様の変化を経た後、06時20分に気温の急降下 を伴って強い北風が吹き始めた.ただし,それに先立っ て一時的に風向が北東になった(06時00分~06時20分) 点が成田と違っていた.

第10図は気象官署の自記記録とアメダス10分値資料 を使って、房総半島における風向変化の時刻とその回 転方向を示したものである.風向の回転方向は千葉-成 田から南ではほぼ時計回り、それより北では反時計回 りであり、千葉-成田付近を低気圧性の渦が通ったよう な分布になっている.このように、房総半島中部から 千葉-成田までの地域では台風経路の左側であるにも かかわらず風向が時計回りに変わっており、これは③

の時間変化.20日03~07時の22枚のエ コー図をスライスにしてつないだもの で,図の左側の目盛りはスライスにした エコー図の境界を表す.

の南風から①の北西風への変化に伴うものである.こ の事実も、メソ前線の存在によって台風北側の地上風 が台風本来の渦巻とは大きく異なっていたことを反映 している.

なお第10図から分かるように、メソ前線の進行速度 は房総半島北部では 30~40 kmh⁻¹ であり、台風の半 分程度に過ぎなかった. このことは、前線が台風に追 い抜かれるような形で、中心に相対的に後ろへずれて いったことを示している.

3.4 降雨系の特徴

第11図は、04時45分のレーダーエコー図を示す.台 風北側の降雨域は関東平野の全域をおおっている.ア メダスで見られたメソ前線後面の強雨帯は、エコー図 では南北方向に延びる幅 10 km 程度の複数の降雨バ ンド(図に↓と↑ではさんで示す)から成り立ってい て、このうち東端のものはほぼ前線の先端に一致する. しかし、個々の降雨バンドは目まぐるしく時間変化し ていて、このため第11図のようなエコー図では強雨帯 の存在はあまり明瞭ではない.

これに対して第12図は、エコー強度を第11図の PQ 線上における時間変化の形で示したものである。この 図で見ると、上記の強雨帯は04時ごろから台風の降雨 域の中でひときわエコーの強い領域としてはっきりと 認めることができる(↓で示す).この強エコー帯は東 西幅が 30~40 km であり、複数のバンドが平均化され たものである。このことは、メソ前線に対応する降雨

9

系が,個々のバンドではなくそれらの集合体であった ことを示している.

第12図によると、強エコー帯の東進速度は台風の降 雨域とは異なり、強エコー帯が台風の降雨域の中に占 める位置はだんだん後ろヘずれていっている.また、 この強エコー帯が顕在化したのは台風の降雨域が前線 にかかった04時ごろからである.これらの事実は、強 エコー帯が前線と一体の存在であったことを示してい る.

なお、台風の中心を取り巻く渦状のエコーは04時ご ろから不明瞭になったが、レーダーエコー図を動画に するとエコーの回転を何とか追うことができ、その中 心の軌跡は第4図に示した台風経路とほぼ一致する。

一方,第4図の最低気圧分布から見ると,台風の真の 気圧中心は図示された経路よりも南寄りを通ったよう にも思える。もしそうなら,下層では台風の中心軸が 傾いていたことになるが,はっきりしたことは分から ない.

3.5 前線の立体構造

第13図は成田のドップラーレーダー資料を使って, VAD法 (Browning and Wexler, 1968)で風と水平発 散の鉛直分布を求めたものである. VAD の半径を 15 km までとったので,風も発散も 10 km のオーダーの 範囲で平均した値を表している.

05時以前は最下層では南東風,その上空では南風が 吹いていた.05時以後になると,下層から北風が吹き 始め,時間とともに厚さを増し,06時過ぎには3km程 度の厚さになった.北風の厚さの増加率が約3kmh⁻¹

第14図 成田空港におけるドップラーレーダーの 観測結果.正速度(レーダーから離れる 成分)を実線,負速度(近づく成分)を 破線で表す.(a): N_2 -NRの鉛直面内に おける04時51分のドップラー速度分布. 等値線は $2 m s^{-1}$ ごと.(b): M_2 - M_1 の鉛 直面上に投影された05時24分のドップ ラー速度分布.等値線は $4 m s^{-1}$ ごと.下 段は(a)(b)それぞれの投影面の位置, および風ペクトル(点線による矢印)と ドップラー速度(太矢印の長さ)の関係 を模式的に示したもので,メソ前線は便 宜的に総観規模前線の記号で描いた.

で、メソ前線の移動速度が $30 \sim 40 \text{ kmh}^{-1}$ であること から、北風層の上面は1:10程度の傾きを持っていたこ とが推定できる.北風が吹き始めた直後(05時30分 \sim 06 時00分)には、最下層(225 m)に 30 ms^{-1} の極大を 持つ特異な風速分布になっている.また、北風層の上 部(高さ数100 m)には最大で 10^{-3}s^{-1} 近い収束があり、 これは 1 ms^{-1} のオーダーの上昇流に対応する.

06時を過ぎると収束域は上空へ移り,代わって高さ 1km以下の層には発散すなわち下降流が現れた.これ は強雨の終了時刻にほぼ対応する.これらの所見から, 傾いたメソ前線の前面に上昇流が存在して強雨帯を伴 い,その後面に下降流が存在する構造がうかがえる. これはアメダスによる地上風の発散の分布(第8図) と符合する.

前線先端付近の下層風をより具体的に見るため,第 14図にドップラー速度の断面図を示す.このうち a は レーダーから方位290°の鉛直面上(第10図の N₂-NR) のドップラー速度分布を示したもので,前線にほぼ直 角な風速成分を表している.正のドップラー速度は レーダーから離れる風速成分(110°風成分)を,負の ドップラー速度は近づく成分(290°風成分)を示す. レーダーから約 10 km のところを境にして,手前に最 大 8 ms⁻¹ の正速度,向こう側に 12 ms⁻¹ の負速度の 領域が下層 1 km ぐらいまで認められる.ここの風速 変化率は 10 km 当たり 20 ms⁻¹ すなわち 2×10⁻³s⁻¹ のオーダーであり,VAD で計算された収束の値と符 合する.

一方,第14図 b はレーダーから200°の方位へ 20 km 離れた場所 (M_0)を中心として,110°~290°方向に立て た鉛直面上 (M_2 - M_1)のドップラー速度を示したもの である.これは,第14図の下段に示すように前線にほ ぼ平行な風速成分を表している.図の右側 (方位110° 側)は負速度 (北寄りの成分)の領域であるのに対し, 正速度 (南寄りの成分)の領域が左側から下層に食い 込んでいる.これらの境界では,10 km 当たり 30 ms⁻¹ すなわち 3×10⁻³s⁻¹程度の水平シアがある.そして, その後面には 300 m 以下の高さに 20 ms⁻¹ 以上の風 速極大が存在する.

4.まとめ

(1) 台風8922の接近に先立ち,関東平野の下層は 台風の東側を吹く厚い湿った南西風の中を,薄い(数 100 m)寒気を伴うメソ前線が南下する状況になって いた。 (2) 台風が近づき,その北側の降雨域が到来する とともに、メソ前線の後面の寒気層は厚さを増し、北 〜北西風が強まった.また、前線を境とする風速差(水 平シア)が増大し、前線の走向は南北成分を持つよう になった.メソ前線の傾きは1:10程度であった.

(3) 台風は鋭い気圧中心を持っていたが,台風の 北側に位置する房総半島中〜北部の地上風は前線に沿 う顕著なシアラインを成し,台風本来の渦状の気流は 著しく変形されていた.このため,前線通過の際には 短時間に風速が急増し,台風経路の左側にもかかわら ず風向が時計方向に回転するなど,台風通過時として は異例の変化が現れた.

(4) 前線の後面(西側)には,幅 30~40 km の強 雨帯ができた.これは複数の降雨バンドの集合体であ り,その前面(東側)には10⁻³s⁻¹のオーダーの収束と 1 ms⁻¹ のオーダーの上昇流が解析された.

(5) 前線付近の風速とシアは,前線に直角な方向 の成分よりも平行方向の成分のほうが大きく,前線の 後面にはごく低い高度に 30 ms⁻¹の風速極大が存在し た.

今回は小型台風の事例であったが、大型台風の中心 付近で前線強化が広い範囲に起こる例としては、冒頭 で触れたメソ温暖前線が挙げられる。また、既存の寒 冷前線が強化された例としては、台風6118の南側に形 成されたシャープなメソ寒冷前線がある(蔵重・奥山、 1965;藤部、1993)このときは、数100 km にわたっ て等圧線がV字形に変形し、広範囲に突風をもたらし たことが記録されている。

このように、既存の前線に台風が近づく場合、台風 を取り巻く地上風が著しく非対称化してシャープなメ ソ前線を伴うことは注目に値する。台風の中心付近は 風が強いため、前線強化過程は一旦始まると急速に進 行し、渦度の集中によって強い水平シアを持つメソ前 線ができるものと考えられる。しかし、前線強化過程 や前線の力学についての探求は、今後の問題として残 しておきたい。

降雨系の面から見ると,今回の事例はメソ前線が強 い上昇流を伴い,その寒気側に強雨帯ができた点に特 徴がある.このような強雨帯は,大型台風の北東側に おける温暖前線の際にも現れ,関東など太平洋側の平 野部に大雨をもたらすことがある(藤部,1992).Sakakibara *et al.* (1985)は台風8124の事例を解析し,メ ソ前線の寒気側に傾いた上昇流域が存在することを指 摘した.同様の特徴は,岡村・田畑(1987)による台 風8610の解析でも得られている。今回の事例もメソ前 線に伴う気流構造の点でこれらと共通性があるが、今 回は小型台風のもとで前線変形が狭い範囲に限られた ことと、台風や前線の移動が速く大雨よりも強風が目 立った点が異なっている。

台風の通過時には、ここで取り上げた現象の他にも 大気下層に多彩な変化が見出される.今後、多数事例 の比較や過去の調査事例の再検討を通じて、台風中心 域の地上風についての系統的な知識を作り上げていく ことが課題であろう.

謝辞

成田空港におけるドップラーレーダー観測に当た り,新東京空港公団,日本電信電話株式会社,新東京 航空地方気象台観測課のお世話になった.気象官署の 自記記録とアメダス10分値の資料は気象研究所台風研 究部の岡村博文氏に見せて頂いた.館野の資料は高層 気象台から頂いた.その他のアメダス・気象官署の資 料は気象研究所電計管理班所有の磁気テープ資料に依 り,計算・作図の一部には HITAC M-280D および S-3800 計算機を使った.

参考文献

Browning, K. A. and R. Wexler, 1968 : The determination of kinematic properties of a wind field using Doppler radar, J. Appl. Meteor., **7**, 105-113.

- Fujibe, F., 1991 : Diurnal modulation of the movement of surface cold fronts in central Honshu : Examples in the warm season, J. Meteor. Soc. Japan, 69, 439-448.
- 藤部文昭,1992:台風時の南東風場で関東平野に現れる メツ前線一事例と統計一,天気,**39**,697-706.
- **藤**部文昭,1993:台風9119による東北地方の強風の特徴 一洞爺丸・第2室戸台風との比較一,天気,**40**,403-412.
- 蔵重 清,奥山志保子,1965:第2室戸台風による新潟 県下における強風並びに風害,天気,12,75-83.
- 岡村博文,田畑 明, 1987:昭和61年8月の大雨一小貝 川上流域に集中した雨の特徴一,日本気象学会予稿集, 51,35.
- 岡村博文,田畑明,山崎信雄,高橋清利,1990:T8922 北西象限の気圧変動,日本気象学会予稿集,57,20.
- 大谷東平,曽根喜一郎,1937:昭和10年9月下旬関東方 面の豪雨に就て,中央気象台彙報,**11**,140-156.
- 大谷東平,寺田一彦,1934:関東地方付近を通過する台 風の構造に見らるる特異性に就いて,気象集誌,12, 260-262.
- Sakakibara, H., M. Ishihara and Z. Yanagisawa, 1985: Structure of a typhoon rainstorm in the middle latitudes observed by Doppler radar, J. Meteor. Soc. Japan, 63, 901-922.
- 内海徳太郎, 中沢鈴子, 1956:5415号台風の寒冷前線に ついて, 研究時報, 8,1-7.