レーダーエコーの立体的な時間変化と LLP で測定した落雷頻度の関係*

見 立 陽 一**

1. はじめに

落雷位置標定システム,LLP (Lightning Location and Protection System)の実用化により,落雷位置と タイミングが高精度で得られるようになった.一方, 雷雲の活動は現業用レーダーの7.5分間隔の5仰角 データとしてえられる.そこで,特定の雷雲の部分の エコーセルの3次元構造と落雷頻度を対比して,落雷 の短時間予報の手法の可能性を探った.

その結果,エコーセルに含まれる最も強いエコーの 強度の高度範囲(温度スケールで示した)に着目する ことにより,落雷発現のタイミングの推定が可能なこ とが示唆された。

2. 調査方法

本調査で使用した仙台レーダーはアンテナを5段階 の仰角にステップさせて観測を行っている(迫田, 1990).オリジナルのレーダーエコーでは第1図のイ メージが7.5分毎に、2.8度、1.8度、1.1度、0.6度、0.1 度の仰角別に5枚得られる.上記のイメージは2.5km 四方のメッシュのデータである。

次に, エコーセルの立体的な構造のおおよそを知る ために特定の領域(ほぼ20km四方)を切り出し,各 仰角ごとに観測された画素から,高度と強度毎にヒス トグラムを作った.この領域は,対象とする孤立エコー の移動と伴に移動させた.この場合,レーダー5仰角 の観測からおよそ10kmまでの高度分布を得るため には,レーダーサイトからの距離や方角が制限される. 第1図の矩形で囲まれた部分をサンプル領域として切

* Lightning activities by LLP and corresponding vertical changes of radar echoes in summer.

** Youichi Mitate, 仙台管区気象台予報課。

-1994年3月31日受領--1995年11月2日受理-

© 1996 日本気象学会

1996年1月

第1図 1992年5月22日13時30分における仙台
レーダーの仰角0.6度のエコーパターン
図中の楕円は内側から順に1km 毎の等
高度線を示す。なお、実際の観測では、
さらに仰角0.1度、1.1度、1.8度、2.8度
で、円錐状にエコー分布が得られる。

り出し,強度毎のエコーを高度別に分類したのが第2 図 a である。

また,第2図bは仙台レーダーサイトの処理範囲(サ イトを中心とした東西南北に 250 km の領域)上に表 示した,毎正時から7.5分間毎の落雷位置及びその頻度 であり,短い棒1本が1回の落雷を示す.前述のサン プル領域に対応する落雷は,同図中の矩形内に示され る.

LLPの測定原理は、複数の落雷方位測定装置で捕捉 した放電による電磁波の到来方位から、対地放電また は雲間放電の位置を求め、さらにこれらを基準波形と 照合することにより対地放電(落雷)のみを抽出する ものである.なお、LLPの標定誤差は2kmと言われ ており(本間ほか、1991)、この様な表示法で良いであ ろう.

調査は1992年の6例について実施した. 第3図〜第 5図にケース1 (以下C1と略す. 以下同じ), C6,C9 (いずれも岩手県中南部)の3例について, 強度別にエ コーの存在する高度範囲の時系列を選び示す. また, 図中には朝9時の秋田のエマグラムより推定した各 0°C, -10°C, -20°C, -40°C のそれぞれの高度を矢印 で示した.

レーダーエコーの鉛直構造の特徴を示す簡単な指標

第2図 (a);第1図矩形で囲んだ領域の高度1km毎の範囲に含まれる画素数の強度別のヒストグラム(6本の棒グラフは左から順に、1~2km, 2~3km等の高度範囲に含まれるそれぞれL1からL6までのエコーの画素数,縦軸1目盛10画素).なお,Rは降水強度(mm/h)で,L1(R<1),L2(1≤R<4),L3(4≤R<16),L4(16≤R<32),L5(32≤R<64),L6(R≥64)を示す、(b);落雷位置と頻度(矩形内は上記領域に対応する7.5分間の落雷数).</p>

第3図 ケース1のエコーの存在する高度範囲を km で表した時系列で、太線は上から順 に、L3, L4, L5, L6 の当該時刻における 高度範囲. 図のシンボルは観測時刻前7.5 分間の落雷数を次の定義により示したも ので、×;落雷なし、○;弱い落雷(10回 以下)、◎;強い落雷(11回以上、30回未 満)、☆;激しい落雷(30回以上)また、 左欄の数字は時刻.

として、当該時刻で最も強いエコー(卓越エコー; Supreme Echoes, 以下 SE と略記)に着目し、その存 在する位置と厚さを調べ、落雷数との関係を調べた. ただし、調査に際しては以下のことを仮定した.

- ①エコーの変化が落雷現象に先行し、タイミングに よっては7.5分前のエコーと対応する場合もあり うる。
- ②大気の状態曲線が朝9時と発雷時とで大きく変わらない。

3.エコーの高度範囲と7.5分間の落雷数の時間変化。

3例について、鉛直構造の時間経過と落雷数を次に 説明する。

3.1 C1 の場合(第3図)

はじめに, エコーの鉛直構造の時間変化を調べてみ よう. 12時37分には SE は高度 2~5 km にレベル 3 の強度(以下 L3 と略記)があるだけである. この後 エコーは急速に発達し, L3 が厚くなるとともに, 12時 45分には, L5 のエコーが, 13時以降には, L6 のエコー も出現する. 特に13時22分には SE (L6)が高度 8 km まで達する.

7.5分毎の落雷数は,SE(L3)しか観測されなかっ た12時37分までは0回,L4以上が出現した13時までは 10回以下であったが,SE(L6)が厚くなり,その上端 が-15℃層付近に達した13時7分以降は,25~30回と 急増し,SE(L6)が高度8kmまでに達した直後(13 時30分)には46回と約1.6倍に増えている。

レーダーエコーの立体的な時間変化と LLP で測定した落雷頻度の関係

3.2 C6 の場合(第4図)

この事例では、15時00分に高度 3~5 km (0~-15°C 層) に SE (L3) が観測された. エコーは発達し、15時 7 分には新たに SE (L4) が 2~5 km に出現し、15時 15分には SE (L5) が 2~5 km に達し、しかも SE (L3) は、高度 10 km (-40°C 層)を超えたが、落雷は発生 しなかった. エコーは15時22分にはやや弱まるが、15 時30分に再び発達し、SE (L5) が高度 6 km の-15°C 層を超えて初めて落雷が発生している。

すなわち,この事例では SE (L5) が−15℃ 層を超 えるかどうかで,落雷の有無が分かれたと考えられる.

3.3 C9 の場合(第5図)

この事例では、全観測期間で L3 のエコーが高度 8 km 以下で観測された.エコーは12時15分以降やや発 達し、12時22分には L6 のエコーが高度 4~5 km に観 測された.12時45分から13時 7 分までは、SE (L6) が 高度 8 km にまで達しており、この事はこの期間がこ のセルの最盛期であることを示唆する.

上記のエコーの変化と落雷数の対応を調べると,SE (L5) である12時15分までは落雷がない.また,SE (L6) が 4~5 km に初めて現れたときにもまだ落雷は 観測されなかった.それが,SE (L6) が高度 8 km (-20°C の高度) に達した以後落雷数が増加し,12時52 分,30回,13時00分,32回,13時07分,28回観測され ている.SE (L6) が 6 km まで低下すると落雷数は減 少し,13時15分,11回,13時22分,5回,13時30分, 1回となっている.

4. 落雷とエコーの鉛直構造との関係

分かり易くするため,SE の高度範囲を温度スケー

第6図 温度スケールで示した卓越エコーの厚さ と7.5分の落雷数との関係.ただし,本図 では右側ほど高度が高いことを示す.

ルに変換し、6つのケース全てについて(C2,C4 は茨 城県北部を東進したもので、高度から温度への変換は 館野の9時の状態曲線から求めた)、7.5分間の落雷数 により弁別し、さらにケース番号の昇順に、同一ケー スの場合は時刻順に並べたのが第6図である。

この図から卓越エコーと落雷との関係について次の ことが分かる.

- SE が L3 の場合には、その位置、高度範囲のいかんにかかわらず落雷がなかった。
- ②SEのL6がでると90% (19例中17例) 落雷があった.
- ③7.5分後に激しい落雷に移行した例も含めると,30 回以上の落雷があったのは,SEのL6が−15℃層 以下の全層に拡大しているケースの67%(9例中 6例)に見られた。
- ④SE の L5 が-15℃ を挟んで、上方か下方もしく は両方に厚くなると86%(7例中6例)、10回以下

45

第7図 1992年5月24日における落雷位置の7.5分毎の時間変化.

の落雷があった。

⑤SE の L4 の上端が−15℃ 層を超えると57%(7 例中4例)で落雷があった。

また,エコーおよび落雷数の時間的変化には次の特 徴があった.

- ①落雷が観測されるときは、エコー強度と厚さの時間変動が大きい。エコーが発達して L4 のエコーが出現すると落雷が発生し始め、L6 のエコーの層が厚くなると落雷数が多くなった。
- ②エコーが発達するときの鉛直構造の変化特徴としては、ある強度のエコーが一定の厚さ(概ね2~8kmの高度範囲)に達すると、その上のレベルのエコーが発生することが多かった。
- ③第7図は、落雷数が時間とともに急激に増加した ときの観測結果である。矩形内に注目して、落雷 の時間変化を調べると、落雷の発生がまず面的に 広がり、次に同一メッシュでの落雷数が増加する という特徴があることが分かる。同様な特徴は今 回調べた6例中2例の落雷数が急激に増加した例 について見られた。

以上の観測結果から、以下のことが考えられる.

- ①L4 (降水強度 16~32 mm/h) 以上のエコーがない と落雷が発生しない。この条件に加えて、L4のエ コーが-15℃ 層を超えると落雷が発生し始め、L6 のエコーが-20℃ 層に達すると落雷の頻度が増 加することから、L4以上の強いエコーが存在する 層の温度の鉛直分布を考慮することにより、落雷 の発現を推定できる可能性があると考えられる。
- ②あるレベルのエコーが、概ね 2~8 km の高度範囲を超え厚くなると、その上のレベルのエコーが発生するという、エコーの鉛直変化の特徴がある。 従って、エコーの鉛直構造の時間変化に着目すると、強エコー出現が予測でき、ほんの目先の時間ではあるが、落雷の予測の可能性も考えられる。

今後はより多くの事例での検証および物理的な意味 付けが課題である。

謝辞

解析には小出寛氏(気象研究所)の作成したプログ ラムを使用させて頂いた.また本調査の作成にあたり 貴重なデータを提供していただいた東北電力株式会社 の本間規泰氏に感謝します。

参考文献

迫田優一,1990:気象レーダーのデジタル化について,

天気, 37, 659-670.

本間規泰,小室弘,石井勝,北條準一,1994:東北地域 における磁界による落雷位置標定システムの高性能 化,電気学会論文誌,B114,No4,419-424.

1996年度山本・正野論文賞候補者の推薦募集

日本気象学会の山本・正野論文賞は,(旧)山本賞(新 人賞)の発展として平成2年度発足し,平成8年度は その7回目に当ります.この賞は前2年間(1994年及 び1995年)に発表された気象学に関連する論文の中か ら,基礎研究・応用技術研究を問わず,新進(原則と して35歳未満)の研究者・技術者による優秀な論文を 選び顕彰するものです.論文公表の雑誌は国内・国外 を問いません.

これまでの受賞者は,平成2年度:向川均(気象大 学校),3年度:佐藤薫(京都大学),4年度:田中博 (筑波大学),5年度:沼口敦(国立環境研),牛丸眞司 (沼津高専),6年度:中村尚(東京大学),7年度:小 池真(名古屋大学),森本真司(国立極地研)の8氏で す.

つきましては、この趣旨に沿う候補者(論文)を選 考するために、下記により広く会員からの推薦を募り ますので御協力をお願い申し上げます。 記

1. 推**薦**期限

平成8年4月5日(金)

- 2 宛先
 - 〒100 東京都千代田区大手町1-3-4 気象庁内,日本気象学会 山本・正野論文賞候補者推薦委員会
- 3. 推薦書記入事項(A4判横書)
 - (a) 候補者所属氏名
 - (b) 当該論文題目·雜誌名·号数·頁数
 - (c) 推薦理由
 - (d) 推薦者所属氏名印

日本気象学会 山本・正野論文賞候補者推薦委員会 高橋劭(担当理事),廣田勇,播磨屋敏生,近藤純正, 時岡達志,駒林誠,中島映至,近藤豊