明治神宮の森の気候緩和機能・大気浄化機能の評価

(2)森林環境気象モデルによるシミュレーション

神田 学*・森脇 亮*・横山 仁**

要旨

明治神宮で行われた集中観測データを森林環境気象モデルに同化させ、神宮の森の気候緩和機能と大気浄化機能 が定量的に評価された。その結果以下の結論が得られた。1)数点のポロメーター計測データから未知パラメータ を非線形回帰させた気孔コンダクタンスモデルは、気象学的測定から得られた群落気孔コンダクタンスの傾向をよ く表現した。2)この気孔特性を森林環境気象モデル(NEO-SPAM2)に同化させて熱収支計算を行ったところ、 実測値を良好に再現した。3)神宮の森の気候緩和機能を大きく左右する植物の活性度(気孔コンダクタンス)は、 樹冠部ほど大きく、下方へ向かうほど減少している。また植物の活性度は午前中の早い時間帯に最も盛んであるこ とが示された。4)本モデルを用いて、神宮の森における汚染物質吸収量(鉛直下向きフラックス)を算定したと ころ、その日中の平均値は、観測結果と定量的によく一致した。またピーク時の NO₂ フラックスを神宮の森全体の 面積に換算すると、乗用車93台分が排出する NO₂ 量に相当することが明らかとなった。5)また汚染物質吸収は早 朝に効率的に行われること、樹冠付近の葉への吸収が活発なことなど、観測で得られなかった大気浄化の時空間変 動特性が示された。

主な記号

下付添え字 c:葉部に関する量 下付添え字 g: 地表面に関する量 下付添え字 L: 個々の葉層に関する量 下付添え字 の: 気孔底界面に関する量 上付添え字 i:物質の種類を表す a:葉面積密度(m²m⁻³) C:汚染物質の濃度 (ppb) c_p:空気の定圧比熱 (JK⁻¹g⁻¹) cm, ch: 葉部層の運動量および熱交換係数 D: 分子拡散係数 (m²s⁻¹)F:葉の傾きを示す係数 g_a, g_c :葉面境界層及び気孔コンダクタンス (cms⁻¹) H:顕熱輸送量(Wm⁻²) IE: 潜熱輸送量(Wm⁻²) * 東京工業大学工学部 ** 東京都農業試験場 -1997年2月6日受領-

か: 圧力 (kgm⁻¹s⁻²) q:比湿 (kgkg⁻¹) Q:汚染物質フラックス (ppb ms⁻¹) r:アルベード *Rn*:正味放射量(Wm⁻²) *S*[↓], *S*[↑]:下向き,上向き短波放射量(Wm⁻²) T:温度(K) *t*:時間(s) *u*, *v*, *w*:*x*, *y*, *z*方向の風速成分(ms⁻¹) u*: 地表面の摩擦速度(ms⁻¹) $U: U = \sqrt{u^2 + v^2}$ 水平スカラー風速 (ms⁻¹) v_s :沈降速度 (ms⁻¹) z: 地表からの高さ (m) β:蒸発効率 *θ*:温位(K) ρ:空気密度 (gm⁻³) **d**_E: 比湿の鉛直勾配に関する普遍関数(近藤, 1994) σ:ステファンーボルツマン係数 (Wm⁻²K⁻⁴)

L[↓], *L*[↑]:下向き,上向き長波放射量(Wm⁻²)

1997年10月

© 1997 日本気象学会

1. はじめに

本論は,前編(神田ほか,1997)で報告した明治神 宮の森における集中観測結果を踏まえて,以下の2点を 目的としている.1)ポロメーター計測から得られた 植物生理データを森林気象モデル(NEO-SPAM2:神 田,1996)に同化させる手法を提案し,その有効性を 熱収支観測データの再現をもって検証すること.2) 上記モデルを用いた数値計算により,観測だけからで は詳細に検討することの出来なかった,神宮の森の気 候緩和機能・大気浄化機能における植物活性度の影響 を明らかにする.特に群落への汚染物質吸収量につい ては,その時空間変動特性についても考察を加える. 以下,この2つの目的に関する簡単なレビューを行う.

1)の点について:植物群落内の乱流過程について は,近年,クロージャーモデル(Yamada, 1982), LES モデル(Kanda and Hino, 1994)など様々なモデルが 提案され、その予測精度も飛躍的に向上してきたと言 える、運動量や放射など気象要素的なモデル化につい てはかなりのレベルにまで達しており、蒸散や汚染物 質吸収などの森林の大気環境機能の評価精度は最終的 には植物生理パラメータすなわち気孔抵抗の取り扱い に掛かっているといっても過言ではない。生物モデル については様々なものが提案されているが、都市内に 人工的に作られた緑地は、水分条件・汚染物質・土壌 の栄養状態など諸々の環境因子の影響を強く受けてい るはずであり、対象としている緑地で実際に計測され た植物生理データをモデルに同化させていくことが必 要不可欠となる、その際,前編で述べたようにポロメー ターで点計測された値そのものは群落全体を代表して いるとは限らず、工夫が必要となってくる.

2)の点について:一枚の葉レベルに限れば,気孔 抵抗が与えられた場合の汚染物質吸収の素過程は,大 政(1979)の一連の研究成果により既に確立されてい ると言える.長期の汚染物質暴露による葉の耐性の問 題は別として,短期的な汚染物質吸収のメカニズムは, 蒸散同様,気孔抵抗をキーとして流体力学的に記述さ れる.問題は,この知見を如何にして群落全体に拡張 するか,である.一枚の葉の吸収量に葉面積を掛ける だけの単純積分は不適当であり,群落内の物理構造を 踏まえ,植物生理を同化させた気象モデルによる積分 が必要となることは言うまでもない.従って,群落蒸 散・熱収支の評価同様,問題は上記1)に帰着するこ とがわかる.

2. 森林環境気象モデル(NEO-SPAM2)の概要

上記モデルは、大気ー植生ー土壌系の相互作用を考 慮し森林環境気象を総合的に取り扱うことを目的とし て開発されたもので(神田, 1996),乱流モデル・境界 条件などいくつかのオプション選択が可能であるが, ここでは本解析に関連した基礎方程式系のみを簡単に 述べることにする.

2.1 大気系の基礎方程式

気流,温位,比湿,汚染物質濃度の基礎方程式を,(1)~(5)式に示す.

$$\frac{Du}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv + \frac{\partial \langle -uw \rangle}{\partial z} - c_m a Uu \tag{1}$$

$$\frac{Dv}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial y} - fu + \frac{\partial \langle -vw \rangle}{\partial z} - c_m a Uv$$
 (2)

$$\frac{D\theta}{Dt} = \frac{\partial \langle -\theta w \rangle}{\partial z} + c_h a U(\theta_c - \theta)$$
(3)

$$\frac{Dq}{Dt} = \frac{\partial \langle -qw \rangle}{\partial z} + \beta_L c_h a U(q_c - q) \tag{4}$$

$$\frac{\partial C^{j}}{\partial t} + u \frac{\partial C^{j}}{\partial x} + v \frac{\partial C^{j}}{\partial y} + (w - v_{s}) \frac{\partial C^{j}}{\partial z}$$
$$= \frac{\partial \langle C^{j} w \rangle}{\partial z} - aQ^{j} \tag{5}$$

ここで、< >は、アンサンブル平均を表す. 式中の乱 流相関項の取り扱いには、Mellor and Yamada のク ロージャーモデル level 2.5を用いる. なお右辺最終項 は、植生の影響による各物理量のシンク・ソース項を 表している. また圧力については、静水圧近似が仮定 されている.

2.2 土壌系の取り扱い

(a) 熱・運動量・水蒸気 林床部における運動量お よび熱輸送は、モーニンーオブコフの相似則に従うも のとし、地表面粗度は0.01m を与えた.また地表面温 度は強制復元法(Bhumralker, 1975)を用いて決定し た.地表面蒸発は β 法により、観測から逆算した値 ($\beta_{s}=0.5$)を用いた.

(b)汚染物質 林床部における物質吸収はまだ未知 な部分が多いが、ここでは形式的に水蒸気輸送とのア ナロジーから式(6)のように表すこととする. D^{j} は 汚染気体の分子拡散係数、 $D^{H,0}$ は水蒸気の分子拡散係 数、 $C^{j} \geq C_{g^{j}}$ はそれぞれ基準の高さと地表面における 汚染物質濃度を表す. Payrissat and Beilke (1975) によれば SO₂ の吸収速度は、土壌水分量や pH によっ て大きく影響を受けることが指摘されているが、酸性 度が中立に近い場合は $C_{g^{j}}=0$ とすることにより、汚染

第1表	樹体	の熱	物性	値
-----	----	----	----	---

			21 - 2 -		
密度	0.8×10 ³	kg • m ⁻³	葉面積密度	a	$0.4(m^2m^{-3})$
比熱	$3.0 imes 10^{3}$	$J \cdot kg^{-1}K^{-1}$			(地上 6 ~20m まで)
幹の体積	0.097	$m^{3} \cdot m^{-2}$	葉の傾き	F	0.5
(単位面積あたり)			運動量交換係数	C_m	0.2
			熱交換係数	Ch	0.06

第2表 汚染物質の分子拡散係数と気孔底界面濃度(大政, 1979より引用)

ガスの種類(j)	分子拡散係数 $D^{j}(\text{cm}^{2}\text{s}^{-1})$	C_0^j/C^j
H₂O	0.212	_
O_3	0.130	0
NO_2	0.133	0
NO	0.164	0.9以上
注)Co ⁱ :気孔底	R面でのガス濃度, C ⁱ :葉層で	でのガス濃度

物質フラックスは式(6)で表される.

$$Q_{g}^{j} = \frac{\beta_{g} \frac{D^{j}}{D^{H,O}} Ku^{*} (C^{j} - C_{g}^{j})}{\phi_{E}} \qquad (6)$$

2.3 植生系の基礎方程式

(a) 放射過程 植生層内の短波放射,長波放射は, 葉面積密度 a と葉の傾き F を用いて,式(7)~(10) で表せる.

$$\frac{dS^{\downarrow}}{dz} = FaS^{\downarrow} - Far_c S^{\uparrow} \tag{7}$$

$$\frac{dS^{\dagger}}{dz} = -FaS^{\dagger} + Far_c S^{\downarrow} \tag{8}$$

$$\frac{dL^{\downarrow}}{dz} = FaL^{\downarrow} - Fa\sigma T_c^{4}(z) \tag{9}$$

$$\frac{dL^{\dagger}}{dz} = -FaL^{\dagger} + Fa\sigma T_c^{4}(z) \tag{10}$$

(b) 葉面熱収支と樹体貯熱量 葉面上の熱収支は, 葉への蓄熱を無視出来るとして,式(11)~(14)のよ うに表せる。

 $R_c = H_c + lE_c + 2F\sigma T_c^4 \tag{11}$

$$R_c = (1 - r_c) F \left(S^{\downarrow} + S^{\uparrow} \right) + F \left(L^{\downarrow} + L^{\uparrow} \right)$$
(12)

 $H_c = c_p \rho c_h U(T_c - T) \tag{13}$

$$lE_c = l\rho\beta_L c_h U \left[q_{SAT}(T_c) - q \right]$$
(14)

樹体の貯熱量は、近藤ほか(1991)にならい、幹の

温度が気温と同様に変化すると仮定し樹体の熱容量か ら求めた. 算定に用いた熱物性値を第1表に示す. 表 中の森林単位面積あたりの幹の体積は,前編でも述べ たように1本の幹を円錐形とし現地で測定した単位面 積当たりの本数と胸高直径から求めた.

第3表 葉層部のパラメータ

(c)葉による汚染物質吸収 葉による汚染物質の吸 着は、厳密には、気孔を介して行われる生物的な吸収 と、葉の表面に付着する非生物的なものに大別される (大喜多・北田, 1987).通常、葉面が液状水で湿ってい なければ、前者が圧倒的に支配的であることが知られ ていることから(例えば、Grantz et al., 1995),ここ では気孔を介した汚染物質吸収のみを考慮する.大政 (1979)によれば、汚染物質の葉への吸収は、蒸散とほ ぼ同様のメカニズムで式(15)のようにモデル化され る.

$$Q^{j} = \beta_{L} \frac{D^{j}}{D^{H_{2}O}} c_{h} U (C^{j} - C_{o}^{j})$$
(15)

各汚染物質の分子拡散係数 Dⁱ,気孔底界面濃度 C_oⁱの 値は第2表で与えられている。これらの値は、大政 (1979)により精力的に研究され、他の研究者にも確か められている(例えば、Hill,1971;戸塚・三宅、1991; 建設省土木研究所、1991).

ここで本節で用いられている葉層部のパラメータを 第3表に示す. 植生層は現地でのカメラによる撮影に 合わせて地上6mから20mまで与え,葉面積密度は植 生層内で均一とし,測定した葉面積指数(=5.7)から 算定した. また葉の傾き F は等方性を仮定して0.5を 与え, $c_m \geq c_h$ は近藤(1994)にならい,それぞれ0.2,

0.06とした.

3. 植物生理データのモデル化と同化法について

式(14),(15)から明らかなように,森林の蒸散・ 汚染物質吸収において極めて重要な生物パラメータと なるのが葉の蒸発効率 β_L である.蒸発効率は植物生理 学でよく用いられる葉面境界層コンダクタンス g_a (葉 面境界層抵抗の逆数)および気孔コンダクタンス g_c (気孔抵抗の逆数)と以下の関係(式(16)~(17))を 有する.

$$\beta_L = \frac{g_c}{g_a + g_c} \tag{16}$$

$$g_a = c_h U \tag{17}$$

葉面境界層コンダクタンスは流体力学的に理論的な 評価が可能なので(例えば Monteith, 1973), 植物生理 に依存する気孔コンダクタンス特性を的確に抽出する ことが,気候緩和機能・大気浄化機能の定量評価の精 度の鍵を握っていることになる.

3.1 応答関数としての気孔コンダクタンスモデル

前編で述べた現地観測データより,環境因子に対す る気孔特性を抽出することを試みる.計測点における 葉の気孔コンダクタンス(アウトプット)のばらつき は,主にその場の環境因子(インプット)の違いによ るもので,同じ群落内の気孔コンダクタンス特性(応 答関数的なもの)そのものには,ある程度の共通性を 期待できるかもしれない.気孔コンダクタンスは,光 合成有効放射量,飽差(植物内外の水蒸気圧差),葉の 温度,植物内水ポテンシャル,土壌水分量など様々な 要因に影響され,そのモデル化は数多く報告されてい る.ここでは現在最も広く使われている Jarvis(1976) のモデルを原型として,光合成有効放射量,飽差,葉 温の3つの環境変数に対する関数(式(18))を設定し た.モデルパラメータは,ポロメーターによる観測デー タを用いて非線形最小二乗法(修正マルカット法)に より同定した.

$$g_{c} = \frac{g_{cMAX} \cdot PAR}{PAR + \frac{g_{cMAX}}{a}} \cdot (1 - B\Delta e) \cdot \frac{1}{T_{a} - T_{n}} \left(\frac{T_{c} - T_{n}}{T_{o} - T_{n}}\right) \left(\frac{T_{x} - T_{c}}{T_{x} - T_{o}}\right)^{\left((T_{x} - T_{o})/(T_{o} - T_{n})\right)}$$
(18)

ここで、*PAR*:光合成有効放射量(Wm⁻²)、 Δe :飽差 (hPa)、 T_c :葉温(°C)であり、パラメータは、 g_{cMAX} : 気孔コンダクタンスの最大値(cms⁻¹)、a:*PAR* に関 する係数、B:飽差に関する係数(hPa⁻¹)、 T_x :最高 限界温度(°C)、 T_o :最適温度(°C)、 T_n :最低限界温 度(°C)である、ポロメーターによる実測値と回帰さ れたモデル計算値を比較すると第1図のようになり、 上記のモデルの適合性は良好と判断される。神宮の森 の計測値から回帰されたモデルパラメータを第4表に 示す。

このようにモデル化した気孔コンダクタンスを式 (16),(17)に代入する際には,実際の自然条件下での風 速による補正が必要である。

3.2 個葉から得られた気孔コンダクタンスモデル と気象学的群落コンダクタンスの対応関係

群落コンダクタンスは、群落全体を1枚のBIG LEAFと見立て、個葉とのアナロジーで定義されるも のであり、第2図のように個葉の蒸散抵抗と葉間気層 の拡散抵抗を合成したものの逆数となっている。その ため気孔コンダクタンスと同様、植生の蒸散特性を示 すものでありながら、厳密な物理的意味あいは異なる ものである.この群落コンダクタンスは、植物生理デー タとは全く無関係に、前編で算出された潜熱輸送量(群 落蒸散量)と気象データだけから逆算される(近藤, 1994).

植物生理データからモデル化された気孔コンダクタ ンス関数(式(18))に,森林上空の代表的な気象因子 (PAR, *Δe* は林冠上11mの計測値,*T*_cは熱収支より逆 算した森林代表温度)を代入し「1枚の葉の気孔コン ダクタンス」を求め(ポロメーター計測場所のローカ ルな気象因子を代入しているのではない点に留意され

第4表 回帰された気孔モデルパラメータ.

パラメータ	$g_c MAX$ (cms ⁻¹)	a	B (hPa ⁻¹)	T_n (°C)	<i>Т</i> ₀ (°С)	(°C)
値	1.175	0.031	0.032	15.55	32.57	49.50

第3図 気孔コンダクタンス(モデル計算値)と 群落コンダクタンス(実測値)の比較(8 月9日)

たい),それを気象測定から求めた「群落コンダクタン ス」と比較したのが第3図である。両者は絶対値こそ 異なっているが(前述したように,物理的意味が違う ため),時間変動パターンは右下がりで極めて類似した 挙動を示している。このことはSiBなどのBIG LEAF モデルにおける群落コンダクタンスなどのパラメータ 同定に,個葉の気孔計測の情報を利用できる可能性を 示唆しており興味深い。

植物生理データを同化した森林環境気象モデル の検証

3章でモデル化された気孔コンダクタンスモデルを 2章の森林環境気象モデルに取り込み,森林熱収支の シミュレーションを試みる.

4.1 計算条件

上部境界(地上31m(林冠上11m))には,現地測定 によって得られた林冠上の日射量 S,大気放射量 L^{\downarrow} , 風速 u,温位 θ ,比湿 q を与えた.また計算格子は1m

刻みで30層とした.計算の刻み時間は10秒とし,現地 測定を行った時間に合わせて30時間分計算を行った.

4.2 熱収支の再現性

熱収支の算出結果を第4図に示す。図中のシンボル は、実際に林冠上で測定した熱収支の結果である、潜 熱•顕熱などは実測同様,林冠上7m のメッシュ点にお ける計算値で評価されているが、その値には群落林床 部や群落内の各高度の葉面における潜熱・顕熱の計算 値が積分された形で反映されている点に注意された い、モデルによる計算値は実測値をおおむね再現して おり、植物生理特性を同化させた本モデルの有効性が 検証されている.多層型森林モデルは物理的に厳密で あるものの、実用面ではパラメータ設定の困難さ等の 問題があるが(例えば, Raupach and Finnigan, 1988), ここで行った同化手法はその1つの解決案となろう。 地中熱流量は、ほぼ実測値を再現しているが、樹体貯 熱量については実測値とずれが生じている、これはモ デル自体の特性として貯熱量が気温変動の影響を受け やすいためと考えられる.

4.3 気孔コンダクタンスの時空間特性

上記のシミュレーションで得られた気孔コンダクタ

ンスの複数の高度における日変動特性を第5図に示 す、気孔コンダクタンスは樹冠部ほど大きく、下部に なるほど減少しているが、これは日射量の減衰に伴い PAR が低下することによるものである。特筆すべき ことは気孔コンダクタンスが午前8時~9時頃にピーク を示し、以後時間とともに減少していく点である. す なわち、植物の活性度が午前中の早い時間帯に最も盛 んであることを意味する。小杉(1995)は京都大学演習 林で長期にわたるポロメーター計測により気孔コンダ クタンスの時間変動を詳細に調べているが、やはり午 前中にピークを持つことが多いことを報告している. 樹冠部の気孔コンダクタンスに及ぼす各環境変数の寄 与度を第6図に示す. 図中の F(PAR), $F(\Delta e)$, F(T_c) はそれぞれ,式(18) において,右辺第1項から g.max を除したもの、右辺第2項、右辺第3項であり、 いづれも0~1の値をとる。飽差の寄与度が夜間1を 超えているのは、葉温が雰囲気の気温より冷却され水 蒸気圧の逆転現象が起きているためである。日中の気 孔コンダクタンスの時間変化は飽差の影響が一番大き く、次に PAR の変化が効いていることがわかる。

5. 神宮の森による汚染物質吸収量の算定

4.2節で、モデルの妥当性が示されたので、このモデ ルを用いて神宮の森の汚染物質吸収量(鉛直下向きフ ラックス)の算定を行うことにする.対象とする汚染 物質は2章で述べた気孔からの吸収が葉面への沈着よ り支配的と見なせる O_3 , NO_2 , NO の3種類について行 う. これらの物質はガス状であるため自重による沈降 はなく、式(5)において $v_s=0$ とする. SPM は以上の 仮定からはずれるので今回は扱わないことにする.

5.1 計算条件

前章と同様に,上部境界条件に現地で測定された汚 染物質濃度(神田ほか,1997)を与えて算定した.

5.2 汚染物質吸収量の算定結果

各種汚染物質 (O_3 , NO_2) の林冠上3m における鉛直 下向きフラックスの算定結果と前編で示した観測結果 を第7図に示す.観測値は O_3 については9日, NO_2 に ついては10日のものを示した(他の期間は欠測のた め).モデル結果と観測結果はオーダー的に同じであり 妥当な値を示している.しかし時間変化に注目すると, モデル値に比べて観測値は大きく変動している.これ は前編でも述べたように,傾度法による物質フラック

ス (a) O₃ (b) NO₂.

スの算定では細かな時間変動まで議論するに足る十分 な精度がない(Andreae and Schimel, 1989)ためで ある.そこで,観測値に移動平均操作を施し計算値と 比較してみると(第7図),両者の時間変動は,共通の 傾向が見出される.そこでモデルによる汚染物質フ ラックスの算定は妥当であると判断し,これをもとに 神宮の森の汚染物質吸収特性を考察する.NOについ てはモデルの検証は行えていないが,参考までに本モ デルによる吸収特性について言及する.

モデルによる吸収速度(フラックスをその場の濃度 で除したもの)を第8図に記す. O_3 , NO₂の吸収速度

(m) 20 15 植生層 10 03 5 NO2 NO 0 0.04 0.08 ٥ 0 12 0.16 $(ppb ms^{-1})$ 第10図 植物による汚染物質吸収量の鉛 直分布(8月9日14時) 図中の 矢印は,植生層を示す.

はともに0.5~1.1cms⁻¹程度であり、他の様々な樹林 帯で実測・推定された既存値(Townsend, 1974; 戸 塚・三宅、1991)と比較して、オーダー的には妥当な 値である NOの吸収速度が小さくなっているのは, 植 物の気孔底界面における濃度が高く、植生による吸収 効果が小さくなるためである。いずれの物質の吸収速 度も気孔コンダクタンスの日変化挙動と同様に(第5 図参照),午前中にピークを示しており,神宮の森が早 朝に効率よく汚染物質を吸収していることがわかる。 上部境界条件として与えた O3 濃度の値が昼頃ピーク を示す(神田ほか, 1997)ため, O3 フラックスも昼頃 最大となっている(第7図a)が,NO2 濃度は時間変 化がそれほど大きくない(神田ほか,1997)ため,吸 収速度が効いて、フラックスは午前中に大きくなって いる(第7図b)、林床部におけるフラックスを,第9 図に示す、O₃, NO₂のフラックスは、林冠上のものに 比べて3桁ほど小さくなっており、林床部での汚染物質 の吸収の寄与が樹冠部に比べて相対的に小さいことを 示している。第10図は植物による汚染物質の吸収量の 鉛直分布を示す。樹冠付近の葉ほど多くの汚染物質を 吸収しており、4章で述べた気孔コンダクタンスの鉛 直分布特性がそのまま反映されている.

本モデルで得られたピーク時の NO₂ フラックス (0.2ppb ms⁻¹)をもとに,神宮の森全体(約712,000m²) が1時間あたりに吸収する NO₂ 量を見積ったところ, 約972g となった.東京都(1992)では,平成7年度にお ける乗用車1台の NO_x 排出量(旅行速度25kmh⁻¹)を 1km あたり0.416g と予測している.これを1時間あた りの排出量に換算すると10.4g となり,全量が NO₂ と して神宮の森に吸収されるとして計算すると、93台分

1997年10月

のNO2量に相当することが推定された.

汚染物質吸収量の算定は、実測に基づいて行われる べきであることは言うまでもないが、上述した傾度法 ではフラックスの細かい時間変動を追うには精度上問 題があり、渦相関法を行うためには高時間分解能の計 測器の開発を待たねばならず、また渦集積法なども発 展途上にあることを考えると、微量気体を含めた汚染 物質吸収量の定量評価手法として、ここで行ったよう な植物生理特性を同化させた数値解析は、ひとつの有 効な手段になるものと考えられる.

6. 結論

森林環境気象モデルに神宮の森で測定されたデータ を同化させ、神宮の森の気候緩和機能と大気浄化機能 を評価し、以下の結論が得られた.

- 2)数点のポロメーター計測データから未知パラメー タを非線形回帰させた気孔コンダクタンスモデル は、気象学的測定から得られた群落気孔コンダク タンスの傾向をよく表現した。
- 2) ポロメーター計測から得られた植物生理データを 森林気象モデルに同化させる手法を提案し、神宮 の森の熱収支計算を行ったところ、実測値とよく 適合し、神宮の森の気候緩和機能が再現された。
- 3)神宮の森の気候緩和機能を大きく左右する植物の 活性度(気孔コンダクタンス)は、樹冠部ほど大 きく、下方へ向かうほど減少している。また植物 の活性度は午前中の早い時間帯に最も盛んである ことが示された。
- 4)本モデルを用いて、神宮の森による汚染物質吸収 量を算定したところ、O₃、NO₂フラックスの日中 の平均量は、観測結果と定量的によく一致した. また、ピーク時の NO₂ フラックスをもとに、神宮 の森全体の大気浄化機能を算定したところ、乗用 車93台分の排出量に相当する NO₂を吸収してい ることが示された.
- 5) 汚染物質吸収は早朝に効率的に行われること,樹 冠付近の葉への吸収が活発なことなど,観測で得 られなかった大気浄化機能の時空間変動特性が示 された.

謝辞

本研究は,文部省科学研究費一般 C07650594「河川・ 森林周辺の人体の熱環境解析とその評価法の提案(代 表者・神田学)」及び河川環境管理財団「河川美化・緑 化研究助成(代表者・神田学)」の財政的援助を受けて 行われました.ここに謝意を表します.

参考文献

- Andreae, M. O. and D. S. Schimel, 1989 : Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Wiley, 135-152.
- Bhumralker, C. M., 1975 : Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model, J. Appl. Meteor., 14, 1246-1258.
- Grantz, D. A., X. J. Zhang, W. J. Massman, G. D. Hartog, H. H. Neumann and J. R. Pedersons, 1995 :
 Effect of stomatal conductance and surface wetness on ozone deposition in field-grown, Atmos. Environ., 29, 3189–3198.
- Hill, A. C., 1971 : Vegetation : A sink for atmospheric pollutants' J. Air Pollut. Control Assoc., **21**, 341-346.
- Jarvis, P. G., 1976 : The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans. Roy. Soc. Land. B., 273, 593-610.
- Kanda, M. and M. Hino, 1994 : Organized structure in developing turbulent flow within and above a plant canopy, using large eddy simulation, Bound.-Layer Meteor., **68**, 237-257.
- 神田 学,1996:森林環境シミュレーターの開発,日本 流体力学会年会環境流体シンポジウム,1,421-422.
- 神田 学,森脇 亮,横山 仁,浜田 崇,1997:明治 神宮の森の気候緩和機能・大気浄化機能の評価(1)1996 年夏期集中観測,天気,44,713-722.
- 建設省土木研究所道路部交通環境研究室,1991:環境施 設帯の大気浄化機能に関する研究,土木研究所資料 2983号,128pp.
- 近藤純正,中園 信,山崎 剛,桑形恒男,1991:森林 樹体の貯熱量の推定,天気,38,123-127.
- 近藤純正,1994:水環境の気象学,朝倉出版,103-108, 231-233.
- 小杉緑子,1995:気孔コンダクタンスの計測とモデリン グ,水文水資源学会誌,8,221-230.
- Monteith, J. L., 1973 : Principles of Environmental Physics, Edward Arnold Press (London), 191-215.
- 大政謙次,1979:植物群落の汚染ガス収着機能一現象の 解析とそのモデル化,国立公害研究所研究報告,10, 367-385.
- 大喜多敏一,北田敏廣, 1987:乾性沈着(汚染物質の沈 着機構),気象研究ノート, **158**, 119-138.

- Payrissat M. and S. Beilke, 1975 : Laboratory measurements of the uptake of sulphur dioxide by different European soils, Atmos. Environ., **9**, 211-217.
- Raupach, M. R. and J. J. Finnigan, 1988 : Single-layer models of evaporation from plant canopies are incorrect but useful, whereas multilayer model are correct but useless, Discuss, Aust. J. Plant Physiol., 15, 705-716.

東京都環境保全局,1992:都内自動車交通量及び自動車

排出ガス量算出調査報告書(概要版), 32pp.

- 戸塚 績, 三宅 博, 1991:緑地の大気浄化機能, 大気汚 染学会誌, **26**A, 71-80.
- Townsend, A. M., 1974 : Sorption of ozone by nine shade tree species, J. Amer. Soc. Hort. Sci., **99**, 206-208.
- Yamada, T., 1982 : A numerical model study of turbulent airflow in and above a forest canopy, J. Meteor. Soc. Japan, **60**, 439-454.

Environmental Effect of Meiji Shrine Forest as a Sink for Atmospheric Energy and Pollutants (2) Numerical Study by Soil-Plant-Air Model

Manabu Kanda*1, Ryo Moriwaki*2 and Hitoshi Yokoyama*3

*1 (Corresponding author) Tokyo Institute of Technology, Tokyo 152, Japan.

*2 Tokyo Institute of Technology.

*3 Tokyo Metropolitan Agricultural Experiment Station.

(Received 6 February 1997; Accepted 9 July 1997)