森 博 明*1•北 田 敏 廣*2•弥 田 賢 次*3

要旨

移動性高気圧が本州中央部を通過した1991年4月21日~23日の3日間について、伊勢湾一濃尾平野を含む領域及 び松本盆地で行われた立体気象観測データをもとに、気流の鉛直構造の日変化を調べた.その結果、1)広域海陸 風日における海陸風の発達高度は、陸風及び伊勢湾海風が層厚200~400 m、遠州灘海風が層厚500~700 m を示す. 2)伊勢湾海風が出現する以前の午前10時頃に、高さ700~1100 m (港区)で濃尾平野周辺の山岳地形効果に基づく と考えられる平地→台地風が吹き始める.3)遠州灘海風の上層には、15~23時頃にかけて、中部山岳に発達する 熱的低気圧(山岳上空の暖気に基づく低圧部)に向かうと考えられる厚さ1000~1400 m、風向 S~SW の大規模な平 地→台地風が出現すると共に、さらにその上層には、平地→台地風の反流と考えられる N~E の風系が見られる. 4)この領域における海陸風は、伊勢湾一濃尾平野一中部山岳という大きなスケールでの地形効果の影響を強く受 けていると考えられる、等の特徴が見られた.

1. はじめに

近年,環境汚染の広域化に対する認識が深まり,地 域規模だけでなく,100 km を超えるスケールでの汚染 質の動態を明らかにする必要性が高まっている.この ような広域での汚染質の動態に深く関わりを持つと考 えられるものの1つに海陸風がある.

この海陸風の鉛直構造については、吉門ほか(1975, 1976)が、パイバルを用いた観測により、鹿島灘に出 現する大規模な海風の存在を示唆している。また、藤 部・浅井(1979)は、南関東における広域的な立体気 象観測データを解析し、沿岸地域に存在する通常の海 陸風系のほかに、関東地方全域をほぼ一様に覆い、そ の高さが3000 mに及ぶ大規模な風系の構造を明らか にした。また、根山(1982)は、瀬戸内の海陸風につ いて鉛直構造を調べ、日没後、海風の高さが最大で1000 mに達することを見いだしている。このほか、関東平

*1 (株)テクノ中部 環境部

- *2 豊橋技術科学大学エコロジー工学系
- *3 (財)日本気象協会東海本部調査部

—1997年1月17日受領— —1998年3月20日受理—

© 1998 日本気象学会

野や瀬戸内においては、規模は異なるものの、比較的 多くの観測が行われ、海陸風の構造についてもかなり 詳しく研究されているが、この濃尾平野一伊勢湾を含 む領域においては、波多(1971)が、大気汚染質濃度 の日変化に関連して、伊勢湾の西岸に位置する四日市 測候所の上層観測データを統計的に解析し、暖候期と 寒候期に出現する海風の層厚を比較したものがある程 度であり、海陸風の鉛直構造については、必ずしも充 分に解明されているとは言い難い.

一方,筆者らは前報告において,伊勢湾一濃尾平野 を含む領域における海陸風の特徴を明らかにすると共 に,その中で最も特徴的な広域海風の出現条件の推定 を試みた(森ほか,1994).そこで本報告では,大気汚 染質の3次元的な挙動を明らかにするうえでの基礎資 料とするため,移動性高気圧が当領域を通過した日を 含む7日間の大規模な立体気象観測事例をもとに,広 域海陸風日等における気流の鉛直構造の日変化を調べ ると共に,濃尾平野と豊科の風系の変化を比較するこ とによって,中部山岳の地形効果と濃尾平野の風系と の関わりについての考察を試みた.

1998年7月

516

2. 方法

2.1 解析対象期間

解析対象期間は、伊勢湾一濃尾平野を含む領域及び 長野県の松本盆地に位置する南安曇郡豊科町におい て、大規模な立体気象観測が行われた1991年4月18日 ~24日の7日間のうち、移動性高気圧が本州中央部を 通過した1991年4月21日~23日の3日間とした.この 期間中については、第1図に示す14地点において、地 上の一般気象観測のほかに、レーウィンゾンデまたは パイロットバルーンを用いた下層~上層域の風向・風 速等の観測が実施されたほか、名古屋市港区において は、ドップラーソーダによる連続観測も同時に行われ た.

2.2 風向・風速分布図及び局地天気図の作成

愛知県,岐阜県,三重県内に設置されている環境大 気常時測定局及び AMeDAS の観測データ(時間値) をもとに,解析対象期間の地上風における毎時の風 向・風速分布図を作成した.なお,解析対象地域は第 1 図に示す34.5~35.5°N と136.5~137.25°E で囲ま れる範囲とした.また,2.1で述べた立体気象観測デー タをもとに,風向・風速の鉛直分布図を作成した.

さらに、4月21日~23日について、中部地方及びその周辺に位置する気象官署の海面更正気圧データをもとに、局地天気図(9時,15時)を作成した.なお、 作図範囲は34~38°Nと135~140°Eで囲まれる領域とした.ここで、前報(森ほか、1994)でも述べたように、海面更正気圧を用いた場合、山岳部の気圧変化を 過大評価することになるが、特に、解析上の不都合はないので、海面更正気圧をそのまま用いた.

3. 解析期間中の気象状況

解析期間中における総観規模の気圧配置(地上,850 hPa,700 hPa の21時)を第2図に,15時における局地 天気図を第3図に示す.

1) 4月21日:地上天気図によれば,大陸より移動 性高気圧が接近しており,三陸沖にも弱い高気圧が見 られる.一方,北海道付近と東海沖には弱い低気圧が 見られる.大まかな気圧配置からすれば,本州中央部 は移動性高気圧の前面に位置しており,全国的には概 ね晴れている.また,局地天気図によれば,山梨県甲 府市付近には,熱的低気圧(Thermal Low,以下,TL という)も発生している.

さらに,850 hPa と700 hPa 面の天気図によれば,日 本上空は,オホーツク海方面から延びるトラフの端に

第1図 解析対象範囲及び立体気象観測地点.

位置しており,西または北よりの風が吹きやすい状況 を示している.

2) 4月22日:地上天気図によれば、本州中央部は、 移動性高気圧のほぼ中心に位置しており、北海道の一 部を除き、概ね晴れている.なお、長野県松本市付近 には、かなり強い TL が発生している.

また,700 hPa 面の天気図によれば,21日とは異なり,日本付近からシベリア東南部にかけて弱いリッジ が存在している.ただし,本州中央部の850 hPa 面では,総観規模の気圧傾度は極めて小さく,局地風の発 達しやすい状況を示唆している.

3) 4月23日:移動性高気圧の中心が太平洋上に移 り、本州中央部はその後面に位置している.また、長 野県大町市付近には TL も発生しているが、天気は次 第に西から崩れつつあり、名古屋地方気象台において も、14~24時にかけて弱い雨(日降水量1.5 mm)が観 測されている.

一方,850 hPa 面の天気図によれば, 房総沖に移動性 高気圧の中心が見られ,濃尾平野上空では,総観規模 での南よりの風が吹きやすい状況を示している.

4. 移動性高気圧の通過に伴う流れ場の変化

4月21日~23日における観測高度別の気流の水平分 布(50~2000 m)を第4~5図に、名古屋市の港区地 点(以下、港区という)と、この港区の北北東約30 km に位置する春日井地点(以下、春日井という)及び豊

"天気"45.7.

1991/4/21、2100JST、地上1991/4/22、2100JST、地上1991/4/23、2100JST、地上第2図解析対象期間における気圧配置(1991年4月21日~23日、21時)、850 hPa と700 hPa の図
中の数字は高度(m)を示す。

科地点(以下,豊科という)における解析期間中の流 れ場の鉛直変化(観測高度50~3000 m)と,その時の 総観場または局地場の気圧傾度の変化を第6~8図に 示す.

第3図 解析対象期間の局地天気図(1991年4月21日~23日の15時).

また,これら3地点における温位の鉛直分布の日変 化を第9図に,港区と豊科における気温の鉛直分布の 日変化を第10図にそれぞれ示す.さらに、3地点にお ける風の南北成分と温位差(50 m ごとの温位差で,上 層の温位から下層の温位を減じたもので示した)と風 の南北成分の鉛直分布の事例を,第11図及び第12図に 示す.なお、この第11,12図中の地形断面は,港区一春 日井一豊科を結ぶ直線上の大まかな地形断面を示して おり,厳密なものではない.

ここで,各観測点における地表面の海抜高度は,港 区が3m,春日井が43m,豊科が543mであり,以下, 特に断らない限り,各観測点における高度は,海抜高 度で表わすこととする.

また,「上層」とは2000 m 超 を,「中 層」とは 1000~2000 m を,「下層」とは1000 m 未満をそれぞれ 示すものとする.

さらに,以下で用いる「海陸風」の定義としては, 海陸の温度差に起因して生じる風系とし,このうち, 伊勢湾を起源とし,これより周囲の陸地へ海岸線を横 切って放射状に吹き出す小規模な海風を「伊勢湾海 風」,遠州灘方面の太平洋を起源とする南東〜南よりの 大規模な海風を「遠州灘海風」とした.また,伊勢湾 海風が発達すると共に,昼過ぎから夕刻にかけて遠州 灘海風が到達し,濃尾平野全体がひと続きのSE~Sの 風系で覆われるような状態を「広域海風」と呼び,こ の広域海風が見られた海陸風日を「広域海陸風日」と した.

4.1 移動性高気圧の前面(4月21日)

第2図に示すように、本州中央部が移動性高気圧の 前面に位置し、日本中央部は概ね晴れている.さらに、 濃尾平野付近の中・上層では、700 hPaと850 hPa面の 天気図が示唆するように、夜間から昼過ぎにかけては、 総観場の気圧傾度に基づく風速8~15 m/sのかなり 強い風が卓越している(第6・7図aのA).特に、名 古屋の南東に位置する豊明地点や西尾地点では、 14~15時にかけて高度700~1600 m付近において、20 m/sを超える NW の強風が観測されている(例:第4 図 [4/21/15 h]の高度1500 m).

また,下層においては,深夜~9時にかけて400 m 以 下で,伊勢湾に収束するように吹く陸風と考えられる NW~NEの風が見られるものの(第6・7 図 a の B), 日中,海風は出現せず,その後は,移動性高気圧から の吹きだしと考えられる WNW~NNW の風系が支 配している.

このほか,港区と春日井の16~19時にかけては,下 層よりも温位が1~2K高いNNW~NNEの風系が 港区では1500~2500 m,春日井では1600~2600 m にそ れぞれ見られる(第6・7図aのC及び第9図a・b).

このように、移動性高気圧の前面に位置している場 合、第6図bに示すように、地上付近での総観場での 気圧は、日本海側の方が太平洋側よりも高いことから (このケースでは0.5~2hPa/100km)、中部山岳に TLが発達しているにもかかわらず、伊勢湾一濃尾平 野を含む領域においては、海側から陸側への風系、す

"天気" 45.7.

第4図 高度別に見た気流の水平分布(1991年4月21日~22日). 各図中の右上端の 枠内は豊料地点を示す.

第5図 高度別に見た気流の水平分布(1991年4月22日~23日). 各図中の右上端の 枠内は豊科地点を示す.

第6図 (a) 港区における風向・風速の鉛直分布と,(b) 伊良湖一福井間の気圧傾度の日変 化(1991年4月21日~23日). 矢羽根は第4図と同じであり,気圧傾度は伊良湖から 福井を減じたもので示した.

1998年7月

8 図 (a) 豊料における風向・風速の鉛直分布と,(b) 松本一長野間の気圧傾度の日変化 (1991年4月21日~23日). 矢羽根は第4図と同じであり,気圧傾度は松本から長野 を減じたもので示した.

なわち,南よりの海風成分が出現しにくくなっている と考えられる(森ほか,1994).

一方,豊科では、中・上層は終日,概ね,西よりの 風に覆われているが(第8図aのA),これは、第2図 の850 hPa と700 hPa の天気図からも示唆されるよう に、総観場の気圧傾度に基づくものと考えられる.ま た、下層については、深夜から早朝にかけて、強い冷 気層が発達しており(第9図c),このうち、地上〜約 400 m については、次第に風向を南よりから北よりに 転換している(第8図aのC).

その後, 12~20時頃にかけては, 地上~約2200 m(発達時) において, 総観場の気圧傾度の後押しを受けながら TL に吹き込む, 谷風と平地→台地風の成分が合体したと考えられる WNW~ENE の風系が見られる (第8図 a の D 及び第11図 a の A). さらに, その上層では, 16~19時にかけて, この平地→台地風の反流(中部山岳の TL 上部からの水平発散) と考えられる S ~W の風が吹いている (第8図 a の E).

4.2 移動性高気圧の中心(4月22日,広域海陸風日)

1)陸風期(1~9時):濃尾平野では1~4時頃ま では、全層にわたって北よりの風が卓越しているが、 特に4時においては、港区の700m付近、春日井の1000 m 付近において, N~NE の20 m/s 前後の強風が出現 している(第4図[4/22/4h]の高度500・1000 m, 第 6・7図aのD及び第11図bのA)

これは、移動性高気圧からの下降流に、中部山岳及 びその周辺地域の地表面の放射冷却によって生成した 冷気が加わった低層ジェット(Stull, 1988)と考えられ る.その後、6~9時になると、福井から伊良湖に向 かう気圧傾度力が弱まると共に(第6図b)、地表付近 では風が弱まり、風向もNW → NE に変化している (第6図aのE).なお、この北東風は、濃尾平野中央 部での典型的な陸風の風系に一致している。

また、気温及び温位差の鉛直分布からは、深夜~5 時にかけて港区の1200~1500m付近と6~8時の 700~1000m層において、最大で約+2K/100m(気温 差)を示す逆転層が見られるが(第10図 a の A・B 及 び第11図 b の B)、これらの逆転層の成因については、 前者は移動性高気圧からの下降流による沈降性逆転、 後者は春日井→港区にかけて下層の風速が加速されて いることから、これを補償するような下降流に基づく 逆転とそれぞれ考えられる。

このほか,5~8時には,港区,春日井両地点の 200~300 m において,陸風の進入に伴う,陸風上層部

第10図 (a) 港区と, (b) 豊科における気温の鉛直分布の日変化(1991年4月21日~23日). 図中の実線は不安定層を,破線は安定層(逆転層)の位置を示す.

での逆転層が見られる(第10図 a の C).

一方,豊科の風向は、 $1 \sim 5$ 時にかけては、総観場 の気圧傾度に基づくと考えられる NW~NE の風が全 層にわたって吹いているが(第8図 a σ F)、 $6 \sim 9$ 時 については地上500 m 位までの風向が SE~SW と南 よりを示している.この風系は、温位が低いことから、 松本盆地を取り巻く周囲の山からの下降流(山風)と 考えられ、その後、10時頃まで確認できる(第8図 a σ G 及び第11図 c σ A).

2)陸風→海風交替期,海風初期(10~12時):午前 10時になると,濃尾平野周辺の鈴鹿山脈,伊吹山地, 美濃・三河高原などの山岳地形効果に基づく,平地→ 台地風の吹き始めと考えられる E~SSE の風系が,港 区で高さ700~1100 m (厚さ約400 m),春日井で高さ 500~1300 m (厚さ約800 m) において,それぞれ確認 できる(第6・7図aのF及び第11図cのB).

また,午前11時になると,港区では高さ約200 m まで の風系が,N~NE → NW に転換している.この風は, 引き続き12時には SSW~W に変化していることか ら,これは,伊勢湾を起源とする伊勢湾海風の進入が 始まったことを意味していると考えられる(第4図[4/ 22/12 h]の高度50 m,第6図aのG及び第11図dの A). なお, この伊勢湾海風の層厚は, 最大で約400 m (13~14時)を示しており, さらに, この伊勢湾海風の 上層には, 前述の平地→台地風と考えられる風系が重 なっている. また, 春日井では, 10~11時頃に, 谷風 と考えられる S~W の風系が出現しており, これは次 第に発達した伊勢湾海風の成分と合体しながら16時頃 まで見られる (第 7 図 a の G).

一方, 豊科については, 地上500~1000 m 位までは平 地→台地風と考えられる北東系の風が卓越している (第8図 a の H 及び第11図 c の C).また, 11時には, 地 上1800 m (海抜2350 m)付近において,中部山岳の TL 上部からの水平発散(反流)と考えられる南~西より の風系が出現し,これは,12時には地上1200~2200 m (海抜1750~2750 m)の層に拡大している(第8図 a の I 及び第11図 d の B).

3)海風発達期(13~18時):伊勢湾海風より温位が 1~2K低い遠州灘海風と考えられるSE~SSEの風 系(第9図a及び高木ほか,1993;高木・北田,1994) は、12~13時には、渥美半島から三河湾にかけての地 域で確認された後、15~16時には名古屋付近に到達し ている(第5図[4/22/16h]の高度50・500m,第6・ 7図aのH及び第12図aのA).この遠州灘海風の層

🖸は冷気層(低温位層)を示す.

第13図 広域海風時における気流の鉛直断面(1991年4月22日,16時), 矢羽は第4図に同じ.

厚は、18~19時頃に最大となり、約700mに達している。

また,遠州灘海風の上層には,15~23時頃にかけて S~SW の風系が見られるが(例:第5図[4/22/16 h・ 21 h]の高度1000 m),これは,その吹走時間,風向等 から判断すると,森ほか(1995)でも述べたように, 中部山岳に発達した TL に向う平地→台地風と考えら れる(第6・7 図 a の I,第12図 b の A).この風系は, 18時において,高さ2000 m まで発達しており,その時 の層厚は約1400 m となっている.

さらに、この流れの上部には、TL からの水平発散 (平地→台地風の反流) と考えられる N~E の風系が 見られる(第6・7図 a の J 及び第12図 a の B). また、 港区と春日井の1700~2000 m 付近には、この温位の高 い TL からの水平発散流の沈降に基づくと考えられる 加熱層が見られる(第9図 a・b 及び第12図 a).

一方,豊科の場合は、中・下層では、谷風または平
地→台地風と考えられる北よりの風が吹いているが、
これは16時に最大となり、地上〜約1800 m (海抜2350
m)まで発達している(第8図aのH).

ここで、下層においては、13~15時を境として風向 が NW \rightarrow NE に変化しているが、この風向の変化は、 移動性高気圧の中心の通過に伴うものと思われる.ま た、上層では引き続き、TL からの水平発散と考えられ る南西系の風が吹いている. なお,この時間帯には,豊科では顕著な逆転層は存 在しないが,北よりから南よりの風に変化している地 上2000 m (海抜2550 m)付近において,濃尾平野上空 と同様に,TL からの水平発散及びその弱い沈降流に よると考えられる加熱層が見られる(第9図c及び第 12図 a の C).

この広域海風時(4月22日,16時)における伊良湖 ~豊科にかけての気流の鉛直断面の例を第13図に示 す.

4)海風終期(19~24時):遠州灘海風は,層厚500 ~700 m で推移した後,深夜においても吹走している ように見えるが,総観場の気圧傾度の変化を考慮する と,その成分は,次第に,海風から移動性高気圧に基 づく南よりの一般風に置き替わっていると考えられる (第5図[4/22/21 h]の高度500 m,第6・7 図 a の H).

ここで、遠州灘からの海風が、日没後も継続する点 については、北田ほか(1995 a, b)が濃尾平野一伊勢 湾を囲む鈴鹿山脈、美濃・三河高原等の直近の山岳の みを含めた小領域の場合と、中部山岳全体を含む大領 域の場合を比較した数値解析結果を基に説明している ように、中部山岳などの主として大規模地形によって 引き起こされた局地風に基づく、濃尾平野上空への熱 輸送と、沈降による濃尾平野上空の大気に対する加熱 作用が、日没後の下層部における遠州灘→濃尾平野奥 部への気圧傾度力を維持するためと思われる。

一方,豊科の場合は、気温の鉛直分布(第10図 b の A)より、18時を境として、地表面が加熱状態から放射 冷却状態に変化していることがわかるが、地上~1000 mまたは1500 m 位までは、依然として、平地→台地風 と考えられる北よりの風が吹いている(第8図 a の H).

以上のように,総観場の気圧傾度が小さい場合,濃 尾平野においては,日中,小規模な伊勢湾海風と遅れ て到達する大規模な遠州灘海風の成分,さらには,谷 風の成分が統合することによって,平野全体がひと続 きの広域的な海風場に置かれるという特徴が見られ る.

また,濃尾平野(港区,春日井)と豊科の観測結果 を比較すると,それぞれの風系の出現状況が中部山岳 を挟んでちょうど対称的になっていると共に,日中, 濃尾平野と豊科の上空に,それぞれ平地→台地風の反 流の熱輸送及び弱い沈降流によると考えられる加熱層 が認められることから,濃尾平野一伊勢湾を含む領域 の局地風が,中部山岳の大規模な地形効果の影響を強 く受けていることが推察される

4.3 移動性高気圧の後面(4月23日)

第5図[4/23/5h]の高度50m及び第6・7図aの Kに示すように,港区の午前2~9時にかけては,地 上~300m位(春日井の場合は前日の24時~23日の9 時にかけて地上~約500m)の層で,伊勢湾に収束する ように吹く北または東よりの風系が見られる.ここで, この時間帯の総観場の気圧傾度は,太平洋側の方が日 本海側よりも高いことを考慮すると,この風系は陸風 と考えられる.

その後,10時になると,この陸風に替わって,太平 洋側に移動した移動性高気圧に基づく一般風に,海風, 谷風,平地→台地風の成分が重なったと考えられる SE~Sの風系が2000 m 付近まで見られる(第5図[4/ 23/15 h]の高度50~1500 m,第6・7図 a の L).

なお, その上空においては, 第 2 図の700 hPa の天気 図からも判断されるように,総観場の気圧傾度に基づ く SW~W の風 (風速 4 ~10 m/s) が吹いている(第 6・7 図 a の M). このほか, 14~18時(春日井の場合 は14~17時)にかけては,港区の2000~2500 m 付近と 春日井の2000~3000 m 付近で,TL からの水平発散と 考えられる温位の高い N~E の風が見られる(第 5 図 [4/23/15 h] の高度2000 m, 第 6・7 図 a の N, 第 9 図 a・b 及び第12図 d の A).

また,22時になると,地上から100 m または200 m に

おいて,再び,陸風と考えられる東よりの風系が出現している(第6・7図aのO)

このように,移動性高気圧の後面においては,深夜 〜早朝の下層と日中の上層を除き,概ね,南よりの風 に支配されており,22日に見られたような伊勢湾海風 や遠州灘海風,平地→台地風などは,この一般風の中 に隠されて区別できないことがわかる.

一方,豊科の場合は,前日より発達しつつある地表 面付近の冷気層(接地逆転層,第8図aのJ及び第10 図bのB)は,7時には地上付近から崩壊が始まり, 9時には,ほぼ解消している。また,この冷気層の上 部には,総観場の気圧傾度に基づくと考えられる南 ~西よりの風系が見られる(第8図aのK).

その後,14時になると,地上1000 m 位までが北西系 の弱い風に転換している.この層は,次第に北〜東よ りに風向を変えながら16時まで継続しているが,これ は,時間帯と発達高度を考慮すると,谷風及び平地→ 台地風と考えられる(第8図 a の L).さらに,この上 層には,平地→台地風の反流と考えられる SE〜SW の 風系が見られる(第8図 a の M).その後,17時になる と,地上1400 m までが再び南東系の風に転換し,冷気 を含む山風(第8図 a の N)と合体しながら深夜まで 継続している.

5. まとめ

移動性高気圧が本州中央部を通過した1991年4月21 日~23日の3日間について,伊勢湾ー濃尾平野を含む 領域及び長野県の松本盆地(豊科町)で行われた立体 気象観測データをもとに,気流の鉛直構造の日変化を 調べた.その結果,

1)移動性高気圧の前面(4月21日)では,濃尾平 野においては,日中,全層にわたって,総観場の気圧 傾度に基づく西または北よりのかなり強い風が卓越し ており,海風や平地→台地風は確認できない.

2)移動性高気圧の中心(4月22日)においては, 濃尾平野は広域海陸風日を示したが,濃尾平野で見ら れる海陸風の発達高度は,陸風及び伊勢湾海風が 200~400 m,伊勢湾海風に引き続き出現する遠州灘海 風が500~700 m を示す.

3)伊勢湾海風が出現する以前の午前10時頃に, 700~1100 m 付近の層(港区)で,濃尾平野とその周辺 の鈴鹿山脈,伊吹山地,美濃・三河高原等の山岳地形 効果に基づく平地→台地風の吹き始めと考えられる SE 系の風が入る. 4) 遠州灘海風の上層には、15~23時頃にかけて、 中部山岳に発達する熱的低気圧(TL)に向かう平地→ 台地風と考えられる厚さ1000~1400 mのS~SWの 大規模な風系が出現すると共に、さらにその上層には、 この平地→台地風の反流(TL上部からの水平発散流) と考えられる N~E の風系が見られる。

5)移動性高気圧の後面(4月23日)においては, 日中,中・下層は,総観場の気圧傾度に基づく南より の風が卓越する状況にあり,伊勢湾海風や遠州灘海風 を判別することができない.

6) このほか,3日間の温位の鉛直分布より,濃尾 平野と松本盆地の上空では,TLに吹き込む流れ(平地 →台地風)に対する反流及びその弱い沈降流の加熱作 用に基づくと考えられる高温位層が認められる.

7) さらに、濃尾平野と松本盆地における気温及び 風の鉛直分布の日変化より、総観場の気圧傾度が小さい場合の伊勢湾ー濃尾平野を含む領域における気流は、伊勢湾ー濃尾平野一中部山岳という大きなスケールでの地形効果を強く受けている。

等の点が明らかになった.

謝辞

本研究を実施するにあたり,貴重なデータを提供し て頂いた気象庁,自治体ならびに中部電力環境部の担 当諸氏に深謝致します.また,(財)日本気象協会東海 本部調査部環境第一課長の冨田賢治氏には,貴重な文 献を提供頂くと共に,度々,有益なご意見を頂戴した. さらに,同協会の原広秋,山本有子両氏には,観測デー タの整理において大変なご無理をお願いした.ここに, 厚く御礼申し上げます.なお,本研究遂行のための便 宜を図って頂いた(株)テクノ中部の山本,竹井両部 長並びに,ご指導を頂いた小川部長代理に感謝致しま す.

参考文献

- 藤部文昭,浅井冨夫,1979:関東地方における局地風に 関する研究-第1部:日変化を伴う風系の構造-,天 気,26,595-604.
- 波多正二,1971:四日市の海風と大気汚染,天気,18, 355-363.
- 根山芳晴,1982:瀬戸内の海陸風について,天気,29, 653-668.
- 北田敏廣,岡村 聖,高木久之,1995a:k-ε/メソスケー ル気象モデルによる濃尾平野の局地風解析−様々なス ケールの地形効果−,土木学会環境工学研究論文集, 32,241-252.
- 北田敏廣,岡村 聖,高木久之,1995b:k-ε/メソスケー ル気象モデルによる濃尾平野の局地風解析−様々なス ケールの地形効果−,日本気象学会秋季大会講演予稿 集,294.
- 森 博明,小川 弘,北田敏廣,1994:濃尾平野におけ る海陸風の特徴と広域海風の出現条件,天気,41, 379-385.
- 森 博明,小川 弘,北田敏廣,1995:広域海陸風日の 濃尾平野における気流の鉛直構造,日本気象学会1995 年秋季大会講演予稿集,296.
- Stull R. B., 1988 : An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 520-526.
- 高木久之,北田敏廣,筑紫文夫,小川 弘,1993:海風 時,沿岸部で得られたドップラーソーダデータの k-ε 乱流モデルによる解析,日本気象学会1993年秋季大会 講演予稿集,106.
- 高木久之,北田敏廣,1994:ドップラーソーダによる大 気境界層下部の乱れの鉛直分布とその k-ε 乱流モデ ルによる解析,天気,**41**,827-846.
- 吉門 洋, 蒲生 稔, 横山長之, 1975: 鹿島灘からの海 風の広域観測, 公害, 10, 227-235.
- 吉門 洋, 1976: 鹿島灘系海風の構造, 天気, 23, 88-93.

Vertical Structures of Land and Sea Breezes in the Nohbi Plain during a Passage of an Anticyclone over the Central Japan

Hiroaki Mori^{*1}, Toshihiro Kitada^{*2} and Kenji Iyoda^{*3}

*1 (Corresponding author) Techno Chubu Co. Ltd., Nagoya, 455-8512, Japan

*2 Toyohashi University of Technology.

*³ Japan Weather Association.

(Received 17 January 1997; Accepted 20 March 1998)

Abstract

Characteristic diurnal variations of vertical structure of land and sea breezes in the Nohbi Plain were investigated using rawinsonde and pilot balloon soundings when a traveling anticyclone passed over the Central Japan on 21-23 April 1991.

The major findings are as follows: i)a "plain-plateau wind", the southeasterly toward the Suzuka Mountains nearby the Nohbi Plain, blows early at the altitudes of 700-1100 m at 1000 LST prior to the beginning of the "Ise Bay sea breeze" over the Nohbi Plain; ii) the sea breezes show their different vertical depths depending on the horizontal scale of topography, i. e., the depth of the smaller-scale "Ise Bay sea breeze" is at most 400 m, while large-scale "Enshu-nada sea breeze", caused by the Pacific Ocean, reaches 700 m high; iii) the large-scale "plain-plateau wind", ranging from southerly to southwesterly induced by the "thermal low" formed over the high Japan Alps, continues from 1500 to 2300 LST while clear large-scale return flow is found in the upper layers over Central Japan; iv) the large-scale topographic features of the Japan Alps and the Pacific Ocean dominate local winds over the Nohbi Plain.

第48回科学講演会のご案内

- 主催:東レ科学振興会
- 後 援:朝日新聞社・日本海洋学会・日本気象学会
- と き:平成10年9月18日(金)
 - 開演 18時00分 終演 20時45分
- ところ:有楽町朝日ホール(有楽町マリオン11階) 東京都千代田区有楽町2-5-1(JR 有楽町駅前)
- テーマ:"海洋循環と気候変動"
 - I. 地球温暖化と海
 - 東京大学海洋研究所・教授 野崎義行 II. エルニーニョの科学

- 東京大学大学院理学系研究科・教授 山形俊男 その他:★入場無料,予約の必要はありません.
- 定員638名(当日会場先着順•開場:17時30 分)
 - ★ご来聴の方には,後日講演記録を進呈いた します
- 問い合わせ先:財団法人 東レ科学振興会
- **〒**279-0011 千葉県浦安市美浜1-8-1(東レビル) Tel:047-350-6103