雷雨を伴った寒冷渦の渦位事例解析

坪木和久*•小倉義光**

1. はじめに

以前に、著者の1人(小倉, 1995)は猛暑だった1994 年の夏の関東地方における雷雨活動について調べた。 そして特に8月20・21日に広い範囲に亘って雷雨活動 が活発であったこと、その原因は寒冷渦が関東地方上 空にあり、大気の成層が不安定であったのみならず、 寒冷渦に伴う上昇流が対流不安定を顕在化したためで あると述べた。一方、戸川・村松(1997)は1993年と 1994年の夏期の北太平洋上の寒冷渦について調べ, 1994年の夏の後半には、まず西進してきた subtropical type の寒冷渦が北上して日本に接近し、ついで日本海 で発生した polar type の寒冷渦が南東進して太平洋 に抜けたことを指摘した。後者が小倉の述べた寒冷渦 に相当する。ちなみに、上記の subtropical type と polar type という名称は、cut-off-low についての Price and Vaughan (1992) の分類によるもので, 彼 等の分類法には polar vortex という type もある.

断熱変化を仮定すれば、等温位面上の渦位は保存されるから、寒冷渦の発生から消滅までを追跡するのには、渦位を用いるのが便利である。上記の研究を補足するため、ここでは1994年8月の渦位解析を行った。 さらに数値予報モデルを用いて8月20・21日のシミュレーションを行ない、予測された寒冷渦を実測と比較した。

2.8月の平均の渦位の分布

気象庁から提供をうけた1日4回(00,06,12,18

- * 東京大学海洋研究所(現:名古屋大学大気水圏科学研 究所).
- ** 日本気象協会.

-1998年3月19日受領--1999年5月20日受理-

© 1999 日本気象学会

1999年7月

UTC)の全球客観解析データ(GANAL)を用い,1994 年8月全期間について,次式で定義される温位座標系 の渦位を計算した(二階堂,1986):

 $IPV = -g(\xi_{\theta} + f)(\partial p / \partial \theta)^{-1}$

ここでgは重力加速度, ξ_{θ} は等温位面上の相対渦度の 鉛直成分,fはコリオリ・パラメータ, θ は温位,pは 気圧である.慣例に従い,渦位の単位 (1 PVU) として

1PVU=10⁻⁶m s⁻³ K Pa⁻¹=10⁻⁶m² s⁻¹K kg⁻¹ を採る.

124個のデータセットをまず経度方向に0°から360° まで平均し、さらに8月1日00UTCから31日18UTC まで平均した温位の緯度・高度分布が第1図である。 同じような平均操作を行い、渦位を温位と緯度の関数 として表現したのが第2図である。大雑把にいって絶 対渦度は高緯度で大きいことと、第1図で示した(∂p/ ∂θ)の分布から、第2図の渦位の分布は理解される。

渦位の計算はいろいろな等温位面上でなされたが, 本論文の寒冷渦は345Kの等温位面上で最もよく同定 できたので,以下主にこの面上の分布を示す.第3図 は8月平均の渦位の分布である.第1図によれば,345 Kの等温位面は,平均的にほぼ250 hPaの高度にあり, この高度では高緯度に大きな渦位の溜まりがあること がわかる.

3. 等渦位線の伸張と切離

第4図は本論文の主題である期間の8月11日00 UTCから22日00UTCまで,24時間おきに345Kの等 温位面上の渦位の分布を示す.偏西風の波動に伴い日 付変更線のあたりで南に突出した高渦位の部分は(第 4図a),12日には南西方向に伸張し(第4図b),14日 にはその先端が巻き上がり(第4図d),15日までにそ の南端が160°Eあたりで切離される(第4図e).この切 離された渦(以下渦Aという)はそこからほぼ30°Nの

第1図 時間と経度について平均し,緯度と高度
(気圧)の関数として表現した1994年8月
の平均温位分布図(単位はK).

第2図 緯度と温位の関数として表現した1994年 8月の等温位面上の平均渦位の分布(単 位は10⁻⁶ m s⁻³ K Pa⁻¹).

potential vorticity (345K; August 1994)

第3図 345K の等温位面上の1994年8月の平均 渦位の分布図(単位は第2図に同じ).

緯線に沿って西に向かう(第4図f). これは夏期チ ベット山塊がうける強い日射のため,対流圏上層では チベット高気圧が卓越し,それを巡る高気圧性の流れ は30°N あたりでは東風となっていたためである. 温度 の分布図は省略するが,等圧面上の等温線も渦 A のあ たりで閉じていて,温度は低く,渦 A が寒冷渦である ことを示している(あとの第6図参照).

渦Aは18日ごろ紀伊半島の南方洋上に達する(第4 図h).このときには第5図の「ひまわり」(GMS) 雲 画像にみるように,直径約700 kmのリング状の対流雲 があり,さらにその内部にも活発な対流雲がある.こ のため18日から19日にかけての15時間,伊豆諸島は雷 や突風などに襲われている.この後,渦Aはやや北上 し19日には関東地方に最も接近した後,東に移動しな がら弱くなっていく.第6図は18日00UTCにおける 渦Aの東西鉛直断面図である.渦度・高度とも250 hPa あたりで偏差が最も大きい.また,ほぼこの高度 を境としてそれより上方には温度の正の偏差,下方に は負の偏差があり,典型的な寒冷渦の構造をしている.

一方,すでに17日ごろには次の偏西風波動が活発となり,日本の西と東で等渦位線が南に突出している(第4図g).やがて20日までに再び160°Eあたりで切離がおこる(第4図j).この渦(渦B)はほとんど移動しないが,第5図の19日及び20日の雲画像では,渦Aのすぐ東方に,渦Aの雲リングと押し合うような大きな

"天気"46.7.

第4図 実線は、1994年8月11日00UTCから22日00UTCまで、24時間おき、345Kの等温位面上の渦位の分布.
等値線は2×10⁻⁶ms⁻³K Pa⁻¹おき、シェードしてあるのは4 PVUより大きい地域、A、B、C は切離された渦、細い点線は等温位面の気圧分布を示し、30 hPaごと、

リング状の雲域として認めることができる.

この間日本の西方で等渦位線はゆっくり東に移動し ながら、日本海から朝鮮半島南部にかけて伸張し(第 4図j)、21日までにその先端は切離される(渦C).こ れが8月21日に関東地方の広い範囲に雷雨を発生させ た寒冷渦である.主に東側に半円形に対流雲が発達している(ほぼ4時間ずれた時刻のレーダー図は小倉(1997)の教科書の裏カバー参照).そして第7図が700 hPaにおける寒冷渦の全球客観解析図である.等温線 も等高度線も閉じており、この場合の寒冷渦も下層ま

1999年7月

第5図 1994年8月18日06UTCから21日06UTCまで,24時間おき,「ひまわり」(GMS)赤外雲画像.

雷雨を伴った寒冷渦の渦位事例解析

第6図 1994年 8 月18日00UTC のGANAL か ら作成した渦 A の31°N に沿う東西鉛直 断面. (a) 高度偏差(m),(b) 温度偏差 (°C),(c) 渦度(10⁻⁶s⁻¹). 偏差は31°N の 125~150°E の等圧面平均からの差.

で達していることがわかる. 同時刻の500 hPa の高層 天気図は小倉(1995)に掲載されている.

すでに述べたように、345Kの等温位面は平均的に

1999年7月

は約250 hPa の高度にある. いうまでもなく, この等温 位面の高度は場所により, 日時によって変化する. 第 4 図には等高度線が重ねて描いている. 渦のところで 等温位面の高度は高く(気圧は低く), このことからも 寒冷渦であることがわかるが, 高度変化はあまり大き くはない.

ちなみに,西森・石原(1997)はGMS 雲画像を用い て1988年から1994年までの7年間に北太平洋上で発生 した上層寒冷低気圧を調べ,本節で述べた渦Aは,そ の7年間で関東地方に接近した唯一の寒冷低気圧で あったと指摘している.

4. 寒冷渦のシミュレーション

既に述べたように、8月21日の寒冷渦(渦C)は猛暑 の1994年の夏の関東平野で、最も活発な雷雨活動を起 こしたので、雷雨の予報の見地からも、この寒冷渦は 重要である。それで以前気象庁数値予報課の現業用予 報モデルであった日本域スペクトルモデルを用い、8 月19日00UTCを初期値として、72時間予報を行った。 ただし格子間隔は80 km である。40 km の格子間隔を もつモデルをネスティングした予報実験も行ったが、 結果は80 km の格子間隔の場合と本質的に同じであっ たので、以下80 km の格子間隔の場合についてだけ述 べる。

その結果の一部として,第8図に300hPaにおける 温度場・ジオポテンシャル場・風の場の推移を示す.

15

第8図 1994年8月19日00UTCを初期値とした72時間予報実験による300 hPa面上の等高度線(実線,50 m おき,ラベルの単位は100 m),等温線(破線,2°Cおき),風(m/s,風速のスケールは図の右下)と前1時間の降水量(薄い影は0.1 mm以上,濃い影は2 mm以上の降水量).

T(予報時間)=12時間(第8図 a, 19日12UTC に対応) では寒気を伴ったトラフが南西の方向に日本海を横断 して朝鮮半島まで延びている。台湾の東方洋上には台 風16号が位置している。等高度線が日本海上でくびれ (第8図 c),等温線も等高度線も閉じた寒冷渦となる のが第8図 d(T=48時間,21日00UTC)である。その 後の12時間,寒冷渦はゆっくりと南東の方向に進む(第 8図 e).

このシミュレートされた寒冷渦の位置は実測のそれ とよく一致している。また、第8図dあるいは第8図 eにおいて,降雨域が東北地方から南に延びている点 や,紀伊半島あるいは東海地方にも降雨域がある点は, 第5図の雲画像と矛盾していない。

5. まとめ

関東地方の夏の雷雨の研究の一環として、1994年8 月の渦位解析を行った。特に注目した8月11日から22 日の期間,日本付近では3つの寒冷渦(A,B,C)が 出現している。いずれも345Kの等温位面上でみると, 等渦位線が南に伸張し,その先端が切離するという過 程で発生していることは共通している。しかし渦Aは 西進し,渦Bはほとんど移動せず,渦Cは東南東方向 に移動したという違いはある。渦Aは戸川・村松 (1997)と西森・石原(1997)の両者に記載されている が,渦Bはいずれにも記載されていない。渦Cが8月 21日関東地方に広範囲の雷雨をもたらしたものであ る。 渦Cについて気象庁の日本域スペクトルモデルを 用いて72時間のシミュレーションを行い,降雨域の位 置を含めて渦Cがよく再現されることを示した.

謝辞

本研究にあたり,客観解析データと日本域スペクト ルモデルを提供して下さった気象庁数値予報課に感謝 したい.また Price と Vaughan の論文を教えて下 さった気象庁の村松照男氏に感謝したい.この研究は 著者の1人(小倉)が東京大学海洋研究所の外来研究 員として行ったものであり,同研究所ならびに木村龍 治教授にお礼を申し上げたい.

参考文献

- 二階堂義信,1986:Q-map(等温位面上で解析された渦 位分布図),天気,**33**,289-331.
- 西森 厳,石原隆史,1997:GMS からみた上層寒冷低気 圧(その1),研究時報,**49**,39-49.
- 小倉義光, 1995:猛暑の夏の雷雨活動, 天気, **42**, 394-396.
- 小倉義光, 1997:メソ気象の基礎理論, 東京大学出版会, 215pp.
- Price, J. D. and G. Vaughan, 1992 : Statistical studies of cut-off-low systems, Annal. Geophys., **10**, 96-102.
- 戸川裕樹,村松照男,1997:亜熱帯域を西進する寒冷渦, 日本気象学会春季大会講演予稿集,132.

A Potential Vorticity Analysis of Thunderstorm-Related Cold Lows

Kazuhisa Tsuboki* and Yoshimitsu Ogura**

* (Corresponding author) Ocean Research Institute, University of Tokyo. (Present affiliation: Institute for Hydrospheric and Atmospheric Sciences, Nagoya University, Chigusa-ku, Nagoya, 464-0814, Japan)

** Japan Weather Association.

(Received 19 March 1998; Accepted 20 May 1999)