101:1051 (メソ気象;気象力学)

メソ気象力学の基礎(II)

小 倉 義 光*

7. 物体の落下運動一運動方程式を時間積分する 運動方程式を解く(あるいは解を求める)というこ とがどういう事なのか示すために,最も簡単な例とし て物体の落下運動を考える.

質量 *m* をもった小さな物体 (質点)を地表面から高 さ *h* に持ち上げ,時刻 t=0で手を放して自由に落下 させたとき,物体の高さ *z* が時間と共にどう変化する かという問題を考える.前節までは,*z* は鉛直座標であ り,独立変数の1つであったが,今回はラグランジュ 的に物体の位置を追いかけるので,*z* は従属変数,独立 変数は時間 *t* である.物体の速度は $w \equiv dz/dt$ であ り,加速度は dw/dt (すなわち d^2z/dt^2)である.落 下する物体に対する空気抵抗を無視すると,物体に働 いている力は,下向きの重力だけであるから,運動方 程式は式 (5.1) により,

$$m\frac{d^2z}{dt^2} = -mg \tag{7.1}$$

である. g は定数であるから,式 (7.1)を時間 t について積分すると,

$$\frac{dz}{dt} = w = -gt + a \tag{7.2}$$

が得られる. aはある定数で,積分定数と呼ばれる. aがどんな値をとっても,式(7.2)は式(7.1)を満足 させるから,式(7.2)は微分方程式(7.1)の解であ る. 初期(t=0)に速度は0と指定したから,a=0で ある. そうしておいて,式(7.2)をもう一度積分する と,

$$z = -\frac{1}{2}gt^2 + b \tag{7.3}$$

© 1999 日本気象学会

が得られる. b は別の積分定数である. 初期に物体の位置 z は h であると指定したから, その条件を式 (7.3) に入れると, b=hと決まる. 従って, 式 (7.3) は,

$$z = -\frac{1}{2}gt^2 + h \tag{7.4}$$

となる. 念の為,式(7.4)をもとの微分方程式に代入 すれば,それが満足されていることが確認できるし, 2次の微分方程式(7.1)に対する2つの初期条件(t=0でw=0とz=h)も満足されている.だから,(式 7.4)が求める解である.

式(7.4)の両辺に質量 m と g をかけ,

$$\frac{1}{2} mg^2 t^2 = mg(h-z) \tag{7.5}$$

と書き直す. 質量 m の物体が地表面から z の高さに いれば,重力に逆らってその高さにいるのだから,そ の物体は mgz という位置のエネルギーを持っている. 初期の位置エネルギーは mgh であった.それで式 (7.5)の右辺は落下に伴う位置のエネルギーの減少量 を表す.一方,質量 m の物体が w という速度で運動し ていれば,その物体の運動エネルギーは (1/2) mw^2 で ある.いまの場合,初期の運動エネルギーは 0 と指定 したから,式 (7.5)の左辺は運動エネルギーの増加量 を表す.従って,式 (7.5) は,

運動エネルギーの増加量 =位置のエネルギーの減少量

を表す、言い換えれば、

運動エネルギー+位置エネルギー=一定 (7.6)

である. すなわち,運動方程式(7.1)から物体のエネ ルギー保存則が容易に導けるのである.

^{*} Yoshimitsu Ogura, 財団法人日本気象協会.

8. 大気の静的安定度一常微分方程式を解く

重力の下にあって密度成層をした大気の中で空気塊 (パーセル)を,ほんの少し上方に移動させたとき,空 気塊がもとの位置に戻るか,移動した位置に止まるか, ますますもとの位置から遠ざかるかによって,大気の 成層を安定,中立,不安定と判別することは,一般向 けの解説書に述べてある.本節では,このことに数式 的表現を与えよう.

いま,空気塊は周囲の気圧を乱さないで,かつ空気 塊内の圧力は周囲の気圧といつも同じに保ちつつ,断 熱的に,ほんの少し上方に移動したとする.空気塊の 位置を *z* で表すと,空気塊の運動を支配する方程式は 前節の式(7.1)に鉛直方向の気圧傾度力を加えて,

$$\frac{d^2z}{dt^2} = -\frac{1}{\rho} \frac{dp}{dz} - g \tag{8.1}$$

である.この空気塊の周囲の空気の状態を()の記 号で表すことにすると、周囲の空気はもともとの静水 圧平衡の状態にあるから、

$$0 = -\frac{1}{\overline{\rho}} \frac{d\overline{p}}{dz} - g \tag{8.2}$$

である.そして上に述べた仮定により, $p=\overline{p}$ であるから, $dp/dz = -g\overline{p}$ である.これを式 (8.1)に代入すると,

$$\frac{d^2 z}{dt^2} = g \, \frac{\overline{\rho} - \rho}{\rho} \tag{8.3}$$

を得る.一方,気体の状態方程式(5.7)と温位の定義 式(5.9)から*T*を消去すると,

$$\rho = \frac{I}{\theta} \frac{p}{R} \left(\frac{p_0}{p}\right)^{R/C_{\rm P}}$$
(8.4)

が得られるから、これを式(8.3)に代入すると、

$$\frac{d^2z}{dt^2} = g \,\frac{\theta - \overline{\theta}}{\overline{\theta}} \tag{8.5}$$

を得る.いま,空気塊が出発した高度を鉛直座標の原 点にとると,空気塊が微小量 zだけ移動した点におけ る周囲の大気の温位は, $\overline{\theta}(z)$ をテイラー展開して1次 までの項をとって,

$$\overline{\theta} = \theta_{\rm i} + \left(\frac{d\overline{\theta}}{dz}\right)z \tag{8.6}$$

である. θ は原点における θ の値である.一方,空気塊 は断熱的に,温位を保存しながら移動したのであるか ら,

$$\theta = \theta_1 \tag{8.7}$$

である. 式 (8.6) と式 (8.7) を式 (8.5) に代入する と,

$$\frac{d^2z}{dt^2} = -\frac{g}{\overline{\theta}} \left(\frac{d\overline{\theta}}{dz}\right) z \tag{8.8}$$

が得られる.以下,簡単のため, $(1/\overline{\theta})$ ($d\overline{\theta}/dz$)は高度に無関係な一定値と仮定して,式(8.8)の微分方程 式の解を求めよう.すなわち式(8.8)を満足する時間 tの関数z(t)を探そう.

式 (8.8) をみると、z & 2 = 0微分したものがもとの zに比例している. この性質をもっている関数は表1 でみた通り、vをある定数とし e^{tr} か sin vt (cos vt で もよい) である. それでzは e^{tr} に比例するとして式 (8.8) に代入すると、

$$\nu^2 = -\frac{g}{\bar{\theta}} \frac{d\bar{\theta}}{dz} \tag{8.9}$$

が得られる.まず $d\overline{\theta}/dz < 0$ の場合を考える.このときには $v^2 > 0$ であるから,

$$\nu = \pm \left(-\frac{g}{\overline{\theta}} \frac{d\overline{\theta}}{dz} \right)^{1/2} = \pm \left(-g \frac{d\ln\overline{\theta}}{dz} \right)^{1/2}$$
(8.10)

となる. ±のどちらでもよいから, v は正であるとして 解は,

$$z = a \mathrm{e}^{\nu t} + b \mathrm{e}^{-\nu t} \tag{8.11}$$

の形となる. $a \ge b$ は積分定数で,初期 (t=0) にお ける条件で決められる.いま,初期に空気塊は座標原 点 (z=0) にいたとすると,a+b=0 という関係があ る.従って,

$$z = a \left(e^{\nu t} - e^{-\nu t} \right) \tag{8.12}$$

でなければならない. これから, 空気塊の速度 w は,

$$w = \frac{dz}{dt} = a\nu \left(\mathrm{e}^{\nu t} + \mathrm{e}^{-\nu t} \right) \tag{8.13}$$

で与えられる、次に、初期に空気塊は w_0 という速度を 持つとすると、式 (8.13) でt=0とおいて、 $w_0=2a\nu$ でなければならない、これから、 $a=w_0/2\nu$ と求まる、

"天気"46.9.

結局,初期条件を満足する式(8.8)の解は,

$$z = \frac{w_0}{2\nu} (e^{\nu t} - e^{-\nu t})$$
 (8.14)

である. *t* が大きくなると, e⁻⁻はどんどん小さくなる が, e^{*}は指数関数的に大きくなる. すなわち, 初期に 周囲の空気と平衡状態にあった空気塊は, 原点から *w*₀ という任意の初速度で動きだすと, 時間と共に指数関 数的に原点から遠ざかる. このことは, 温位が高度と 共に減少している成層は不安定であることを示してい る.

次に $d\overline{\theta}/dz > 0$ のときは, ν は実数ではなく, $\nu = \pm$ iN という純虚数となる.ここで,

$$N = \left(\frac{g}{\overline{\theta}} \frac{d\overline{\theta}}{dz}\right)^{1/2} \tag{8.15}$$

であり、 $i = \sqrt{-1}$, $i^2 = -1$ である。一般に $A \ge B を$ 任意の実数とするとき、A+iBを複素数といい、A を実数部分、Bを虚数部分という、実数部分がない複素 数が純虚数である。こうして、この場合の解は、

$$z = ae^{iNt} + be^{-iNt}$$
 (8.16)

である. 再び、t = 0でz = 0という初期条件を用いると、

$$z = a \left(e^{iNt} - e^{-iNt} \right) \tag{8.17}$$

を得る. ここで,

 $e^{\pm iNt} = \cos Nt \pm i \sin Nt \tag{8.18}$

という公式があるから,式(8.17)は

 $z = 2ia \sin Nt \tag{8.19}$

となる. もう1つの初期条件, t = 0 で $w = w_0$ を適用すると,

$$w = \frac{dz}{dt} = 2iaN \cos Nt = w_0 \tag{8.20}$$

であるから, $a = w_0/2iN$ と決まる. 結局, 求める解は,

$$z = (w_0/N) \sin Nt \tag{8.21}$$

である. この解は, 重力を復元力として, 振動数 N (周 期2 π/N) で振動する運動を表している. N をブラン ト・バイサラ振動数 (あるいは浮力振動数) という. 典型的な値として $d\overline{\theta}/dz$ =3.5 K/km をとれば, N $\sim 10^{-2}$ s⁻¹となる. これは周期約10分に相当する. この ように,温位が高度と共に増加している大気では,空 気塊は初期に w_0 という速度で動き出しても,原点の周 りの振動を繰り返すだけである. すなわち,このよう な成層は安定である. 結局,次の静的安定条件が得ら れる:

$$egin{array}{ccc} > & 安定 \ rac{d heta}{dz} &= 0 & 中立 \ < & imes c \end{array}$$
 (8.22)

上記の安定条件を温度の高度分布で表現しよう。ま ず、 $\overline{\theta}$ の定義式(5.9)の自然対数をとると、

$$\ln\overline{\theta} = \ln\overline{T} - \frac{R}{C_{\rm p}}\ln\overline{p} + \frac{R}{C_{\rm p}}\ln p_0 \tag{8.23}$$

が得られる. これを z で微分する. $d(\ln\overline{\theta})/dz = (1/\overline{\theta})$ $(d\overline{\theta}/dz)$ であることと, $d\overline{p}/dz = -\overline{\rho}g$ を考慮し, 気体 の状態方程式 (5.7) を用いて $\overline{\rho}$ を消去すると,

$$\frac{1}{\overline{\theta}} \frac{d\overline{\theta}}{dz} = \frac{1}{\overline{T}} \left(\frac{d\overline{T}}{dz} + \frac{g}{C_{\rm p}} \right)$$
(8.24)

が得られる。中立成層の大気では $d\overline{\theta}/dz = 0$ である。 このとき、温度は、 $\Gamma_d \equiv g/C_p$ という乾燥断熱減率 Γ_d で 高度と共に減少する。一般に、温度減率 $\Gamma \equiv -d\overline{T}/dz$ を定義すると、式(8.24)を参照して、式(8.22)から、

$$>$$
安定
 $\Gamma = \Gamma_{d}$ 中立 (8.25)
 $<$ 不安定

というよく知られた静的安定度の判定条件が得られ る.

9. 内部重力波一連立偏微分方程式を解く

前節でブラント・バイサラの振動の話をしたときに は、空気塊は周囲の空気を乱さないように上下に振動 すると仮定した.実際にはこれは不可能である.空気 はびっしりと空間を埋めているから、その一部分が動 けば、その周囲は必ず影響を受ける.事情は、発車間 際の満員電車に1人無理に乗り込んできた状況に似て いる.この人は扉近くの人を押す.押された人は自ら 少し動くと共に、圧力を隣の人に伝える.こうして、 安定成層をした大気の中で空気塊が動けば、周囲の空 気も動くし、運動に伴う圧力変動は波動となって、四 方にひろがっていく.この波動は重力を復元力とする 波動であるから重力波という.

細かくいうと、重力波にも2種類ある.1つは海面 でおこる風波のように、液体と気体が接する境界面、 もっと一般的には、密度が不連続的に変わる境界面で おこる重力波で、外部重力波という.これに対し、本 節で述べる重力波はこのような境界面なしで起こるの で、内部重力波という.

内部重力波を数式で表現しようとすれば、前節で やったように鉛直方向の運動方程式だけを考えるので は不十分である.波動は四方に伝わるから水平方向の 運動方程式も必要である.空気塊が移動すれば、その 隙間を狙って隣の空気塊が動くから連続の式も考慮す る必要がある.簡単のためブジネスク近似を使うこと にすれば、重力波を扱うのに必要な方程式は(6.8)、 (6.20)、(6.6)、(6.22)、(6.24)である.話をできる だけ簡単にするために、運動は y 方向には一様である として(すなわち y 方向の偏微分は無視して)、x、 z 面 内での 2 次元の運動を考える.式(6.9) は使わない.

波動が生ずる前の静止状態では、温位 $\overline{\theta}(z)$ は z 方向 に一定の勾配 ($d\overline{\theta}/dz > 0$)を持つとする. さらに、い ま考えている波動の振幅は極めて小さいので、波動に 伴う $u, w, p', \rho', T', \theta'$ はすべて微小量であるとす る. このことが何を意味するかというと、例えば水平 方向の運動方程式:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial x}$$
(9.1)

において、 $u(\partial u/\partial x) \ge w(\partial u/\partial z)$ は微少量 $u \Leftrightarrow w o$ 積であるから、 $\partial u/\partial t \ge (1/\rho_0)(\partial p'/\partial x)$ にくらべて一 段と小さく無視してよい. そうすると、上式は、

$$\frac{\partial u}{\partial t} = \frac{1}{\rho_0} \frac{\partial p'}{\partial x} \tag{9.2}$$

となる.一般的に,従属変数の2次以上の項を非線形 項といい,1次の項を線形項という.それで式(9.1) のように非線形項を含む方程式を非線形方程式とい い,式(9.2)のように線形項だけを含む方程式を線形 方程式という.非線形方程式の中で非線形項を省略し て線形方程式にすることを方程式の線形化という.同 じ様にして他の方程式も線形化し,断熱変化を仮定す ると,

$$\frac{\partial w}{\partial t} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} + \frac{\theta'}{\theta_0} g \tag{9.3}$$

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0 \tag{9.4}$$

$$\frac{\partial \theta'}{\partial t} + w \, \frac{d\overline{\theta}}{dz} = 0 \tag{9.5}$$

が得られる.連続の式はもともと線形方程式であるから,そのままである.

式 (9.2) - (9.5)が波動に伴って変動する従属変数 u, w, p', θ' を決める4個の連立方程式である.この 解を求めることができれば,内部重力波の運動が明ら かになる.解を求める常套手段は,4個の方程式から 3個の従属変数を消去して,ただ1つの従属変数を含 む方程式を導くことである.その従属変数として何を 選んでもよいが,ふつうはwについての方程式を導く (その理由はここでは扱わないが,境界条件というもの がwについて与えられることが多いからである).そ こでまず式 (9.2)と(9.4)からuを消去することを 考える.式(9.2)をxで偏微分すると,

$$\frac{\partial^2 u}{\partial x \partial t} = -\frac{1}{\rho_0} \frac{\partial^2 p'}{\partial x^2} \tag{9.6}$$

が得られる.式(9.4)をtで微分すると,

$$\frac{\partial^2 u}{\partial x \partial t} + \frac{\partial^2 w}{\partial z \partial t} = 0 \tag{9.7}$$

が得られる.式(9.7)から式(9.6)をひくと u を含 む項が消えて,

$$\frac{\partial^2 w}{\partial z \partial t} = \frac{1}{\rho_0} \frac{\partial^2 p'}{\partial x^2}$$
(9.8)

が得られる.次に式 (9.3) と式 (9.5) から 6'を消去 するために,式 (9.3) を *t* で微分すると,

$$\frac{\partial^2 w}{\partial t^2} = -\frac{1}{\rho_0} \frac{\partial^2 p'}{\partial z \partial t} + \frac{g}{\theta_0} \frac{\partial \theta'}{\partial t}$$
(9.9)

となる. 右辺の $\partial \theta' / \partial t$ に式 (9.5) を代入すると,

$$\frac{\partial^2 w}{\partial t^2} = -\frac{1}{\rho_0} \frac{\partial^2 p'}{\partial z \partial t} - w N^2$$
(9.10)

となる. ここで N は式 (8.15) で定義したブラント・

"天気"46.9.

バイサラの振動数である. 最後に式 (9.8) と (9.10) から p'を消去するために,式 (9.8) を z で微分し t で 微分すると,

$$\frac{\partial^4 w}{\partial z^2 \partial t^2} = \frac{1}{\rho_0} \frac{\partial^4 p'}{\partial x^2 \partial z \partial t}$$
(9.11)

となる.式(9.10)をxで2回微分すると,

$$\frac{\partial^4 w}{\partial x^2 \partial t^2} = -\frac{1}{\rho_0} \frac{\partial^4 p'}{\partial x^2 \partial z \partial t} - N^2 \frac{\partial^2 w}{\partial x^2}$$
(9.12)

となるから,式(9.11)と(9.12)を辺々たし合わせ ると,

$$\frac{\partial^2}{\partial t^2} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial z^2} \right) = -N^2 \frac{\partial^2 w}{\partial x^2}$$
(9.13)

が得られる. これが目的とした w だけを含む方程式である. 前節の常微分方程式と違い, 今度は偏微分方程 式である.

偏微分方程式の解き方にはいろいろあり、ある型の 方程式には特定の解き方が有効である.式(9.13)に 対して変数分離法が有効である.いま $\Psi(t) \ge \Phi(x, z)$ はそれぞれ t および x, z だけの関数であり, $w = \Psi(t)$ $\Phi(x, z) \ge いう変数が分離された形で解が求まるとし$ て、これを式(9.13)に代入すると、

$$\left(\frac{\partial^2 \boldsymbol{\Phi}}{\partial x^2} + \frac{\partial^2 \boldsymbol{\Phi}}{\partial z^2}\right) \frac{d^2 \boldsymbol{\Psi}}{dt^2} = -N^2 \boldsymbol{\Psi} \frac{\partial^2 \boldsymbol{\Phi}}{\partial x^2}$$
(9.14)

となるが、これを書き直して、

$$\frac{N^2 \frac{\partial^2 \boldsymbol{\varPhi}}{\partial x^2}}{\left(\frac{\partial^2 \boldsymbol{\varPhi}}{\partial x^2} + \frac{\partial^2 \boldsymbol{\varPhi}}{\partial z^2}\right)} = -\frac{\frac{d^2 \boldsymbol{\varPsi}}{dt^2}}{\boldsymbol{\varPsi}}$$
(9.15)

とする. 左辺は x, zの関数であり,右辺は t だけの関数であるから,この両辺が等しいためには両辺とも定数でなければならない.その定数を v^2 と書くと, Ψ と Φ を決める方程式はそれぞれ,

$$\frac{d^2 \Psi}{dt^2} = -\nu^2 \Psi \tag{9.16}$$

$$N^{2} \frac{\partial^{2} \boldsymbol{\varPhi}}{\partial x^{2}} = \nu^{2} \left(\frac{\partial^{2} \boldsymbol{\varPhi}}{\partial x^{2}} + \frac{\partial^{2} \boldsymbol{\varPhi}}{\partial z^{2}} \right)$$
(9.17)

となる.式 (9.16)は (8.8)と全く同じ形であるから 解はすぐ $e^{\pm i \mu}$ と求まる.式 (9.17)の解を求めるため に、再び $\phi(x, z)$ が変数分離の形に書けるとしよう. すなわち, $\boldsymbol{\varphi}(x, z) = X(x)Z(z)$ として式(9.17)に代入して整理すると,

$$(N^{2} - \nu^{2})\frac{1}{X} \frac{d^{2}X}{dx^{2}} = \nu^{2}\frac{1}{Z} \frac{d^{2}Z}{dz^{2}}$$
(9.18)

となる. 左辺は x だけの関数, 右辺は z だけの関数で あるから, 各々は定数でなければならない. それで k と n を任意の定数として, X(x)の解としてお馴染み となった $e^{\pm i kx}$ をとり, Z(z)の解として $e^{\pm i nz}$ をとり, 式 (9.18) に代入すると,

$$\nu^{2} = N^{2} \frac{k^{2}}{(k^{2} + n^{2})} = N^{2} \frac{1}{1 + (n/k)^{2}}$$
(9.19)

が得られる.結局, $A_1 \sim A_8$ を任意の定数として,求める解は,

$$w = A_{1}e^{i\omega} e^{ikx}e^{inz} + A_{2}e^{i\omega} e^{ikx}e^{-inz} + A_{3}e^{i\omega} e^{-ikx}e^{inz} + A_{4}e^{i\omega} e^{-ikx}e^{-inz} + A_{5}e^{-i\omega} e^{ikx}e^{inz} + A_{6}e^{-i\omega} e^{ikx}e^{-inz} + A_{7}e^{-i\omega} e^{-ikx}e^{inz} + A_{8}e^{-i\omega} e^{-ikx}e^{-inz}$$
(9.20)

である. ただし, *v*, *k*, *n*の間には式 (9.19)の関係 がある. これを内部重力波の分散関係式という.

定数 $A_1 \sim A_8$ は u, w, p', θ' に対する初期条件や境 界条件によって決まる. 具体的に初期条件や境界条件 を与えて $A_1 \sim A_8$ を決める代わりに, ここでは簡単の ため, 例えば, $A_1 = A_2 = A_3 = A_4 = A_5 = A_6 = A_7 = A_8$ と する. この場合には, 式 (8.18) から得られる.

$$\cos \nu t = \frac{1}{2} (e^{i\nu t} + e^{-i\nu t})$$
(9.21)

という公式を考慮すると,

$$w = 8A_1 \cos \nu t \cos kx \cos nz \qquad (9.22)$$

となる. cos kx は kx が2π だけ異なるときには,同じ 値をとるので, x 方向の波長は $\lambda_x = 2\pi/k$ である.同様 に $\lambda_z = 2\pi/n$ が z 方向の波長である.すなわち,式 (9.22)は x 方向に λ_x , z 方向に λ_z の間隔をもつ流れの パターンが,移動することなく周期 $2\pi/\nu$ で振動して いる重力波を表している.

別の例として、 $A_1 = A_2 = A_7 = A_8 = 0$ 、 $A_3 = A_4 = A_5 = A_6$ のときは、任意の数 $a \ge b$ について、指数関数 には、

$$e^{a}e^{b} = e^{a+b}$$
 (9.23)

という性質があることを利用すると、式(9.20)は、

$$w = 4A_4 \cos nz \cos(kx - \nu t)$$

= 4A_4 \cos nz \cos k(x - c_x t) (9.24)

となる. ここで、 $c_x \equiv v/k$ である. 式(9.24)をみると、 $x - c_x t$ が一定のとき w の値は同じであることがわか る. すなわち,時間が経つと共に、w のパターンは x 方 向に $c_x t$ だけずれていくから、これは x の正の方向に c_x の速度で伝播する波を表す.

さらに, $A_1 = A_2 = A_3 = A_6 = A_7 = A_8 = 0$, $A_4 = A_5$ と すると, 式 (9.20) は,

$$w = A \cos(kx + nz - \nu t) \tag{9.25}$$

となる. ここで $A=2A_4$ である. これは第4 図に示した ように, 波面が x 軸にも z 軸にも傾いた波を表す. x 方 向と z 方向の波長は再び2 π/k と $2\pi/n$ であるが,本当 の波長は 2 つの隣り合った波面の間隔であり,これは $2\pi/(k^2+n^2)^{1/2}$ で与えられる. 波の伝播を x 軸に沿っ てみれば,その伝播速度は $c_x = \nu/k$ であり, z 軸に沿っ ては $c_z = \nu/n$ である. それで真の伝播速度は c_x と c_2 を 成分とするベクトルである. その方向は波面に直角で, 大きさは $\nu/(k^2+n^2)^{1/2}$ で与えられる.

次に, w が式 (9.25) で与えられたとき, 他の従属 変数についての解を求めよう.まず式 (9.8)の左辺に 式 (9.25) を代入すると,

$$\frac{\partial^2 p'}{\partial x^2} = A \rho_0 n \nu \, \cos(kx + nz - \nu t) \tag{9.26}$$

という p'を決める式が得られる. p'の振幅を B とし, $p'=B\cos(kx+nz-\nu t)$ が解であるとして式 (9.26) に代入すると、 $B=-A\rho_0n\nu/k^2$ と決まる. それで,

$$p' = -\frac{A\rho_0 n\nu}{k^2} \cos(kx + nz - \nu t) \tag{9.27}$$

と求められる. 同様にして, 式(9.5)から θ'が, 式(9.4) から u が次のように決められる:

$$\theta' = \frac{A}{\nu} \frac{d\overline{\theta}}{dz} \sin(kx + nz - \nu t)$$
(9.28)

$$u = -\frac{An}{k}\cos(kx + nz - \nu t) \tag{9.29}$$

第5図が u, w, p', θ' の間の位相の相互関係を示した ものである.大気中には音波,重力波,ケルビン波, ヘルムホルツ波,山岳波,順圧不安定波,傾圧不安定 波など,いろいろな原因でさまざまな波動が起こって いる.大気中で観測された波動がどういう波なのか, 同定するためには上記のようないろいろな気象要素の 間の位相の関係が用いられる.さらに例えば $uw, w\theta',$ wp'を1 波長で積分した量は,それぞれ波による水平運動量の鉛直輸送,熱の鉛直輸送,波がする仕事(すなわちエネルギーの伝播)を表し,その値は <math>u, w, p', $\theta'の相互の位相関係で,ゼロになったり,正あるいは負$ になったりする.だから位相は大事なのである.

"天気"46.9.

第6図 非静水圧系と静水圧系における無次元の 振動数 (v/N) と波数 (k/n)の関係.

上記の結果で興味があるのは、他のパラメータはそ のままにしてkを無限大にすると、式(9.27)におい $\tau p'$ は0となるし、式(9.29)でuも0となるし、式 (9.19)でvはNに等しくなる。これはちょうど前節 で、空気塊が周囲の空気を乱さないように、またいつ も周囲と同じ気圧を保つようにしつつ、鉛直方向に振 動したときの状況である。このことから、前節の、い わゆるパーセル法の考え方は、実は本節で行った厳密 な議論で、水平方向の波長を無限小とした特殊な場合 に等しいのだと納得する。こうした点が理論的な解析 のおもしろさである。

次に第6図において非静水圧系と記したのが式 (9.19)のk, $n \ge v$ の関係を図示したものである. す ぐ上で述べたように, $k \to \infty \ v \to N$ となるし, $k \to 0$ では $v \to 0$ となる. ところで本節で行った演算で, 鉛直方向の運動方程式として式 (9.3)を使う代わりに 静水圧平衡の式を用いて演算をやり直してみると, 式 (9.19)の代わりに,

(9.30)

$$\nu^2 = N^2 \frac{k^2}{n^2}$$

という分散関係式が得られる(演習問題として自分で 導いてほしい)これが第6図で静水圧系と記した直線 である。この2本の線を比較すると, k/nが0に近い ときには、もちろん両者は一致しているが, k/nが1 に近付くあたりから離れ始める。このことから、擾乱 の水平スケールが鉛直スケールと同じ程度になると、 静水圧平衡はよい近似を与えないことが分かる。

583

ついでに述べると,式 (9.19) において, $k^2 < (k^2 + n^2)$ であるから, $\nu < N$ であることは明らかである.第 6節でブジネスク近似を導く際に,あまり速く振動す る現象は考えないという条件をつけた.本節ではブジ ネスク近似を用いて内部重力波を議論したが,その重 力波の振動数はいつも N より小さいから,上記の条 件は,時間スケールが 1/N より大きい現象だけを考 えていることになる.ちなみに,内部重力波の伝播速 度の大きさの実感をもつために,かりに k=n と仮定 すると, $\nu=0.71N$ であり, $k=2\pi/10$ km, $N=10^{-2}$ s⁻¹ とすると, $c_x = \nu/k = 11.3$ m s⁻¹となる.これは音速よ り一桁小さい.

重要で興味深い内部重力波の応用問題は山岳波ある いは山越えの気流である。山岳波は笠雲や吊るし雲な ど特有な雲を作ったり,「おろし風」などの局地的な強 風を吹かせたりする。さらに、山岳波に伴う水平運動 量の鉛直輸送は、大気の大循環の角運動量の収支や 日々の数値予報にも無視できない影響を及ぼしてい る。また、大気の状態によっては、内部重力波に伴う 上昇流が積雲対流を起こすこともある。こうした問題 については,前回に引用した「地球流体力学入門」(木 村,1983)や「メソ気象の基礎理論」(小倉,1998)な どを参照していただきたい。また,次回の吉崎正憲氏 の講義には、メソ対流系の中では長時間にわたって多 量の凝結熱が放出されているのに、メソ対流系の中の 温度が数度くらいしか上昇しないのは、凝結熱が内部 重力波によって四方に広がってしまうからだという話 がある予定である