- 森岩 聰,鳥山泰宏,1994:メソ低気圧と地上収束線が 関与する短時間強雨-1993.11.13紀伊半島東側で発生 した強雨について-,気象庁研究時報別冊,46,106-107.
- 若月泰孝,金田幸恵,坪木和久,2001:東海豪雨の構造 とメカニズム(1)マルチスケール構造と総観規模場

の特徴,日本気象学会2001年春季大会講演予稿集, B160.

渡辺真二,中條屋博,森岩 聰,窪田邦晃,1999:岐阜 県西濃地方で1998年7月28日に発生した豪雨の解析に ついて,日本気象学会中部支部講演要旨集,14,5-8.

1052:413 (豪雨の集中化 (集中豪雨))

2. 東海豪雨のメカニズムーその雨をもたらしたもの-

金田幸恵*•坪木和久*•武田喬男**

1. はじめに

空間的,時間的に集中化した多量の降水は,河川の 氾濫,土砂崩れなどを通して,しばしば人命にも関わ る重大な災害を引き起こす.特に,日本を含む下層が 湿潤な亜熱帯域では,低気圧や台風などのほか,さま ざまなメソスケール対流システムによって多量の雨が もたらされる.

降水量の水平分布が地形にしばしば依存すること は、これまでにも数多くの研究者によって指摘されて きている。特に山岳斜面には多量の降水がもたらされ ることが多く、多いときには日降水量が数百ミリにも 及ぶ豪雨が観測されることもある。たとえば、Staff Members of Tokyo Univ. (1969, 1970)は、台風の 通過に伴う雨の研究において、降水が標高に比例して 増加するとした。Yoshizaki *et al*. (2000)は、長崎半 島に沿って形成された対流性線状降水システムに関す る研究を行い、このシステムが長崎半島の地形の影響 で形成されたことを示した。さらに、山の風上側と風 下側での降水強化に関しては、Kanada *et al*. (1999, 2000)が研究を行った。

© 2002 日本気象学会

降水の空間的、時間的な集中化をもたらすメカニズ ムとしては、地形効果のほかに、メソ対流システム自 身が考えられる.メソ対流システムは,さまざまな形 状を持つが、とりわけライン状の降水システムにおい て数多くの研究がなされている。Bluestein and Jain (1985)は、アメリカのオクラホマ州でレーダー観測さ れた150事例のライン状隆水システムの解析を行って、 4つのタイプに大別した。続いて、Bluestein et al. (1987)は、それぞれのタイプに共通する大気成層状態 を示した、スコールラインと呼ばれるライン状のメソ 対流システムについては、さらに数多くの研究がなさ れている (Snull and Houze, 1985, 1987; Fovell and Ogura, 1988; Houze et al., 1990). しかしながら, これらの研究は、熱帯域や北米乾燥域で取得された データに基づくものがほとんどである。日本のように 下層が湿った亜熱帯域では、メソ対流システムも熱帯 域や北米乾燥域で観測された事例とは異なる構造やメ カニズムを持つと考えられる。そのため、これら湿潤 域におけるメソ対流システムの3次元構造や時間変化 の解明が、いまや急務の1つである。

日本のほぼ中央部にあたる東海地方では、冬季を除 き下層で東よりの風が卓越するとき、南北もしくは南 西一北東の走向を持つライン状降水システムがしばし ばみられる.たとえば1972年7月12~13日にかけて東

^{*} 名古屋大学地球水循環研究センター.

^{**} 鳥取環境大学.

屋および東海市の位置を示す)

海地方の中である愛知県西三河地方に発生した集中豪 雨は、南西から北東の走向を持つ降水バンドの下で発 生したことが報告されている(瀬下・田中,1975;小 花,1976). この降水バンドによって、幅20 km,長さ 80 km というきわめて限られた領域に4時間で150 mm もの降水をもたらされた. Takeda (1982)による と、この降水バンドは紀伊半島南東斜面の山岳部から 北西方向に伸びつつ、西三河地方に停滞していた.し かしながら、これらの研究で用いられたデータは、名 古屋地方気象台レーダーの1仰角のデータであり、ご く限られた領域に集中する降水をもたらした降水バン ド自体の3次元的かつ微細な構造の解明まではいたら なかった.

本研究の目的は、2000年9月11日、東海地方に長時 間停滞し多量の雨をもたらしたライン状のメソ対流シ ステムの構造と時間変化を明らかにすることである。 特に、クラウド・クラスターの通過と狭い領域に多量 の雨をもたらしたライン状のメソ対流システムの周期 性に着目して解析を行った。

2. データ

本研究で使用したデータは以下のとおりである.

•GMS(赤外画像)(水平解像度10 km,時間間隔1時間)

- ・気象庁アメダスデータ(時間間隔10分)
- ・レーダー・アメダス合成図(水平解像度 5 km,時間 間隔 1 時間)
- ・浜松と潮岬の高層ゾンデデータ(時間間隔6時間)
- ・中部電力三国山レーダーデータ(水平・鉛直解像度 1 km,時間間隔6分)

中部電力レーダーを含む東海地方のレーダー配置と 観測領域を第1図に示した。

3. 天気概況と降水分布

2000年9月11~12日にかけて,東海地方はきわめて 激しい豪雨に襲われた.東海市における1日半の総降 水量は564 mm であり,時間降水量10 mm/hr 以上の期 間が14時間も続いた.最大時間降水量は,11日の18~19 時にかけての1時間に114 mm を記録した.この総降 水量564 mm という値は,同地点の9月の月降水量 229.5 mmの実に2倍以上にあたる.その結果,東海地 方の多くの地域が洪水に見舞われた.

9月11日0時から12日9時までの気象庁アメダス データから作成した総降水量の水平分布を第2図に示 す.東海地方の特に限られた領域に,極めて多量の降 水が集中していることがわかる.多降水域は,紀伊半 島の南東斜面付近から地形に沿う形で北西に伸びてい る.紀伊半島南東斜面は,台風接近時や温暖前線の通 過時など特に下層で東風成分が見られるとき,しばし ば地形による降水強化が見られる.

期間中, 台風は日本の南東海上500 km の位置にほぼ

"天気"49.8.

620

第3図 GMS 赤外画像とレーダーアメダス合成図の時間変化.

停滞し、日本海上には東西に伸びる停滞前線が存在した。15時の浜松における高層ゾンデデータによると、 下層では南東風が見られ、高度とともに時計回りに回転しながら、850 hPa 面では20 m/s の南西風となっていた。低 TBB 域で定義されるクラウド・クラスターが、次々と東海地方を通過したが、その下では、ほとんど東西に移動しない降水バンドがレーダーによって観測された。それらの降水バンドは、東海地方(東経136.7度)付近に、ほぼ停滞しているように見えた。

4. 結果

4.1 移動するクラウド・クラスター下で,ほぼ停滞 したライン状降水システムの構造と時間変化 強い降水がもたらされた期間中,複数の南北の走向 を持つ対流性降水バンドが東海地方に見られた.第3 図は,GMS赤外画像とレーダーアメダス合成図の時 間変化である。図中に示されるように,発達した雲活

第4図 中部電力三国山レーダの高度3kmの反 射強度からみた降水バンド1 (14時12 分),2 (16時00分),3 (17時42分)の 代表例.

動を示す低等価黒体温度(TBB)域が,西から東に移 動している。その一方で,志摩半島から伊勢湾にかけ てほぼ停滞している降水バンドがみられる。

622

第5図 GMS赤外画像と降水の時間-経度断面 図(降水強度は、中部電力三国山レー ダーの高度3kmの反射強度から算出し た.).

第6図 伊勢湾上の東西風の東西成分の差.正の 値は収束を,負の値は発散をそれぞれ示 す.●:伊勢湾上の風速差,×:知多半島 上の風速差,──:もっとも TBB が低 い領域が,降水バンド上を通過した時刻, -----:降水バンドがもっとも強まった時 刻.

潮岬における11日9時および21時の高層ゾンデデー タによると、東海地方の一般場はほぼ全層にわたって 非常に湿っている。そのため、低 TBB 域は、クラウ ド・クラスターのコアとみなすことができる。

観測された降水バンドは2~3時間の周期で形成も

第7図 13時06分~15時06分の総降水分布(三国 山レーダー高度3kmの反射強度より) と地表風の分布(アメダスデータより.).

しくは強化された.興味深いことに,これらの降水バンドの形成・強化は,低TBB域の通過後数10分後に見られた.

解析期間中,主に3本の降水バンドが東海地方に停 滞した.それぞれの例を第4図に示す.この図からも わかるように,顕著な降水バンドが伊勢湾や知多半島 付近で南北に伸びている.

伊勢湾上における降水バンドの停滞性と降水バンド の周期性,および低 TBB 域の通過との関係は,第5図 からもよくわかる. C1, C2, C3と名づけた低 TBB 域 が西〜東に移動しているにもかかわらず,強い降水域 は東経136.7度付近に停滞している(11日13~18時).

低 TBB 域の通過と降水バンドの周期的な強化の関 係を調べるために,伊勢湾をはさんだ観測地点での東 西風成分を抽出し,東西断面における収束・発散の時 系列を調べた(第6図).東西断面における収束・発散 を示す東西風の風速差のピークが,13時50分,15時30 分そして16時50分にそれぞれ見られる.これらのピー クは,低 TBB 域の通過とよく対応している.降水バン ドの強化が,この伊勢湾上の収束のピークの数10分後 に見られることが,非常に興味深い.これらの時間差 は,収束のピークが降水バンドの対流活動の強化の結 果による吸い込みの結果を反映したものではなく,収 束が先に生じその結果,降水バンドが強まったことを 示唆している.クラウド・クラスターの通過は,伊勢

"天気" 49. 8.

28

第8図 降水バンドの水平構造と鉛直構造の1例(11日14時12分,三国山レーダーより).

湾付近で見られる降水バンドの強化に対して,重要な 役割を果たしていると考えられる.

1本目の降水バンドは、13時06分~15時06分の間に 見られた.第7図に、この時間帯で平均した降水の水 平分布図と、アメダスデータの地表風を重ねたものを 示す.5m/sを越える強い東風が、降水バンドの東側の 広い領域で見られる.また、降水バンドが形成されて いる付近で、この東風と降水バンドの西側に見られる 西風が収束ラインを形成していることがわかる.

4.2 ライン状降水システムの発達と強化

第7図で示したように,特に強い降水域が,降水バ ンド内の北緯34.7度付近に見られる.この降水バンド のより詳しい構造と発達の解析を,三国山に設置され た中部電力のC-バンドレーダーデータ(東経137.18 度,北緯35.15度,標高684 m)を用いておこなった. 3次元構造の1例を第8図に示す.

ライン状のレーダーエコーが,紀伊半島南東斜面付 近や志摩半島付近へ南から北へ伸びている。そのほか にも紀伊半島の南東海上に孤立したエコーが散在して いる.降水バンドを構成するセル状エコーグループは, 南から北に移動している。この移動は,一般場の高度

2~5 km 付近に見られる強い南風の風向と一致している. 紀伊半島南東海上のレーダーエコーグループのほとんどは,エコー頂高度が低く約6 km である.一方で,紀伊半島南東斜面に見られる,エコー頂の高度が10 km を越えるようなレーダーエコーグループは,南

Averaged from 34.6 and 34.9N a)18時00分 3 15時00分 12時00分 from 34.2 34 5N and b) 18時00分 15時00分 12時00分 Negative -2 -1 1 Positive

第10図 GMS赤外画像と高度3kmにおけるδ²R
の時間経度断面図.a)北緯34.6~34.9度
で平均したもの(伊勢湾).b)北緯
34.2~34.5度で平均したもの(志摩半島).

西から北東に移動する.極めて顕著な降水バンドの強 化が、これら背の高さが異なる2種類のレーダーエ コーグループの合流後にみられる.

第9図は、17時12分における降水強度の水平および 鉛直断面を示した図である。このとき低 TBB 域 C3が 東海地方を通過中だった。第9図で示されたように、 中層の弱エコー域が志摩半島上に広がっている。背が 低いエコーグループがこの下に差しかかると、急速に 発達する. この中層の弱エコー域の動きは, 低 TBB 域 すなわちクラウド・クラスターとよく一致していた.

降水のピーク位置の時間変化をわかりやすくするために,降水の時間変化の2次差分(*δ*²*R*)を次のように定義する.

 $\delta^2 R = 2R(t) - \{R(t - \delta t) + R(t + \delta t)\}$

R(t)はレーダーエコーから導かれた24分降水量で あり、 δt としてここでは12分を採用した.

第10図 a, b は, GMS 赤外画像および高度 3 km に おける S²R の時間一経度断面図である, 第10図 a は北 緯34.6~34.9度(伊勢湾付近)で,第10図bは北緯 34.2~34.5度(志摩半島付近)でそれぞれ平均した 2枚の図には、それぞれの領域での降水の極値の東西 移動がよく表われている。伊勢湾付近では、降水の極 大値を示す正の値のほとんどが東経136.7度付近に集 中している(第10図 a)」しかし、16時00分には、 $\delta^2 R$ の大きな正の値のグループが西から東に進み、東経 136.7度付近に定常的に存在していた他の S²R の極大 値と合流する。一方,志摩半島付近では,第10図bに 示されているように, 西から東進してきた S²R の極大 値と東経136.7度付近に定在する δ²R との間で, 13時 30分,15時00分,17時30分の3回の合流が見られる。 降水バンドが強まるのは、これらの合流現象から数10 分後に見られる. これら降水の極大値の移動は,低 TBB 域の通過と一致している

紀伊半島南東海上で形成されるセル状エコーは、降 水バンドに沿って南から北に移動しながら発達する. 北緯34.7度付近に差しかかると、セル状エコーは急激 に個々のセル構造を失い、降水バンドの一部となる. 10 dBZ で定義したエコートップは、この緯度付近でし ばしば高度14 km をも越える. 紀伊半島の南東海上の エコーグループが、北緯34.7度に達するまでに、1時 間程度あるいはそれ以上かかる. すなわちこれらの特 徴は、北緯34.7度付近に達する前に、エコーグループ が再発達していることを意味している.

5. まとめ

レーダーデータ解析に基づいて,活発なクラウド・ クラスター下で東海地方に極めて多量の雨をもたらし たライン状対流性降水システムの解析を行った.

解析期間中,南北の走向を持ったライン状降水シス テムが東海地方に見られた.この降水システムは,伊 勢湾付近にほぼ停滞し,2,3時間周期で強まったり

"天気" 49. 8.

第11図 クラウド・クラスターの通過に関連した ライン状降水システムの強化の仮説図.

弱まったりした.詳細なデータ解析の結果, ライン状 降水システムの周期性が, クラウド・クラスターの通 過と関連していることがわかった. クラウド・クラス ターの通過中, ライン状降水システムの特に西側で西 風成分が強まる. このときライン状降水システムの東 側には東風が広く分布しているため,伊勢湾周辺の収 束が強化される.ライン状降水システムが強まるのは, クラウド・クラスターが通過した数10分後である. ク ラウド・クラスターの通過と, ライン状降水システム の強化に関する仮説図を第11図に示す.

ライン状降水システムを構成する積乱雲群は, ライ ン状システムに沿って南から北へ移動する. 第6図で 示したように, ライン状降水システムの内部の北緯 34.7度付近で,特に降水が強まっている. 積乱雲群は, 志摩半島付近では雲頂の高さによって移動方向が異な る2種類がある. ライン状降水システムの顕著な強化 は, これら2種類の積乱雲群が志摩半島付近で合流し たあとに見られる. これら2種類の振る舞いを見せる 積乱雲群の中で, 西からやってくる雲頂が高い積乱雲 群は, クラウド・クラスターの通過と同期している.

なぜ今回のようなライン状の降水システムが形成さ れたのか,さらに解析を進める予定である.だが,下 層の東風の強化とともにライン状降水システムに沿っ て収束ラインがみられた.下層の強い東風が,ライン 状降水システムの形成と維持に重要な役割を果たした のだと考えられる.伊勢湾における収束ラインの形成 メカニズムを解き明かすためには,地形を含んだ数値 実験などを用いたさらなる解析が必要である.

謝辞

名古屋地方気象台と国土交通省および中部電力株式 会社,ならびに株式会社シー・ティー・アイには,貴 重なレーダーデータを提供していただきました.深く 感謝致します.また,解析にご協力してくださった服 部美紀氏,佐野哲也氏,大東忠保氏,川畑 玲氏にも, 記してここに謝意を示します.

参考文献

- Bluestein, H. B. and M. H. Jain, 1985 : Formation of mesoscale lines of precipitation : Severe squall lines in Oklahoma during the spring, J. Atmos. Sci., 42, 1711-1732.
- Bluestein, H. B., G. T. Marx and M. H. Jain, 1987 : Formation of mesoscale lines of precipitation : Nonsevere squall lines in Oklahoma during spring, Mon. Wea. Rev., 115, 2719–2727.
- Fovell, R. G. and Y. Ogura, 1988 : Numerical simulation of a midlatitude squall line in two dimensions, J. Atmos. Sci., 45, 3846–3879.
- Houze, R. A. Jr., B. F. Smull and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma, Mon. Wea. Rev., 118, 613-654.
- Kanada, S., B. Geng, N. Yoshimoto, Y. Fujiyoshi and T. Takeda, 1999 : Doppler radar observation on the orographic modification of a precipitating convective cloud in its landing, J. Meteor. Soc. Japan, 77, 135–154.
- Kanada, S., H. Minda, B. Geng and T. Takeda, 2000 : Rainfall enhancement of band-shaped convective cloud system in the downwind side of an isolated island, J. Meteor. Soc. Japan, 78, 47-67.
- 小花隆司,1976:47.7西三河集中豪雨のときに現れた レーダーエコーの合流現象,天気,23,347-361.
- 瀬下慶長,田中隆一,1975:昭和47年7月12日~13日の 西三河集中豪雨の降水解析,天気,**22**,101-137.
- Snull, B. F. and R. A. Houze, Jr., 1985 : A midlatitude squall line with trailing region of stratiform precipitation : Radar and satellite observations, Mon. Wea. Rev., 113, 117-133.

Snull, B. F. and R. A. Houze, Jr., 1987 : Dual-Doppler radar analysis of midlalitude squall line with a trailing region of stratiform rain, J. Atmos. Sci., 44, 2128-2148.

Staff Members of Tokyo University, 1969 : Precipitation bands of Typhoon Vera in 1959 (Part I), J. Meteor. Soc. Japan, 47, 298-309.

Staff Members of Tokyo University, 1970 : Precipitation bands of Typhoon Vera in 1959 (Part II), J. Meteor. Soc. Japan, 48, 103-117. Takeda, T., 1982 : Case study of the structure and formation of a heavy-rain band, J. Natural Disaster Science, **3**, 40–51.

Yoshizaki, M., T. Kato, Y. Tanaka, H. Takayama, Y. Shoji, H. Seko, K. Arao, K. Manabe and Members of X-BAIU-98 Observation, 2000 : Analytical and numerical study of the 26 June 1998 orographic rainband observed in western Kyushu, Japan, J. Meteor. Soc. Japan, 78, 835-856.

1052:4011(集中豪雨:非静力学モデル;豪雨予想)

3. 集中豪雨のモデルと予想一数値実験によるアプローチー

加藤輝之*

繰り返し発生(Kato, 1998)などが考えられている.

計算機システムの進歩により,現在,気象庁では水 平分解能10 kmのメソスケールモデルが現業運用さ れ,日々の天気予報に用いられている.しかし,その モデルでは降水セルスケール(水平10 km以下)を解 像できないのでバックビルディング型の維持システム を再現することはできない.気象研究所では雲解像モ デルである非静力学メソスケールモデル(斉藤・加藤, 1996)の開発・改良を行い,今までに集中豪雨をもた らしたメソ対流系を数多く再現している(Kato, 1998 など).さらに,水平分解能2 kmのモデルを用いるこ とでバックビルディング型の維持システムをも再現す ることに成功している.

ここでは、梅雨期に集中豪雨をもたらす環境場についてのレビューを第2節で、研究で用いた数値モデルの説明を第3節で行う.集中豪雨の例として1998年8 月4日に新潟地方に数時間停滞することにより豪雨を もたらしたメソ対流系(詳細についてはKato and Goda, 2001とKato, 2001を参照)について第4節で、 東海豪雨についての再現実験の結果については第5節 で述べる.

1. はじめに

日本の暖候期、特に梅雨期に起こった集中豪雨をも たらす降雨域の形態としては線状構造を持つものが圧 倒的に多い. 降雨域の風下部分では豪雨が持続し, 時 には100 mm h⁻¹を超える局地的な集中豪雨をもたら す. 2000年9月11日から12日にかけて発生した東海豪 雨はその典型だと言えるそのような線状構造を持つ 降雨域はメソ対流系の1つで、バックビルディング型 という積乱雲(降水セル)が繰り返し発生するシステ ムにより維持している。バックビルディング型の維持 システムとは、既存の降水セルから見てまわりの環境 風の上流方向に,新しいセルが生成され,それが成長・ 発達しつつ古いセルと併合して、線状構造を作る機構 である、その発生メカニズムとして、第1図に示した ような降水域での雨滴蒸発による冷気外出流と環境風 との収束による新しいセルの発生 (Fovell and Ogura. 1988), 地形効果(Watanabe and Ogura, 1987) や第 2図に示したような準定常的な収束線での降水セルの

^{*} 気象研究所予報研究部.