103:301:305 (チベット高原;アジアモンスーン;大気大循環モデル (GCM))

3. チベット高原の上昇は新第三紀以降のアジア・太平洋域の

気候変化とアジアモンスーンの成立に

どのような影響を与えたか?

一大気海洋結合大循環モデル(MRI-CGCM)による数値実験結果から-

安 成 哲 三*•阿 部 学*•鬼 頭 昭 雄**

1. はじめに

著者らは、気象研究所大気海洋結合気候モデル (MRI-CGCM version I) を用いて、チベット高原 の平均高度の違いが、全球およびアジア・ユーラシア 地域の気候にどのような影響を与えるかについての数 値実験を系統的に行なった.実験は、高原の平均高度 を0m(実験M0)から現在の高度(約5000m;実験 M)の間を4段階(実験M2,M4,M6,M8;例え ば M4 は現在高度の40%の平均高度を意味する) に分 けて行った.その結果,チベット高原の上昇は,アジ ア・ユーラシア地域のみならず、全球的に大きな気候 変化を引き起こすことが明らかになった。北半球夏季 の気候,アジアモンスーンと熱帯大気海洋系の変化に 与える影響については、すでに3編の論文(Abe et al., 2003, 2004, 2005) として報告している。このシン ポジウムでは、これらの熱帯地域での変化に加え、高 原の高度変化が,東アジア地域の冬季モンスーン気候 やアジアの内陸の乾燥気候の形成や冬季の日本海側の 積雪にどのような影響を与えるかについて, この数値 実験の結果と最近のテクトニクスの成果などを対比し つつ、議論したい.

2. 夏季アジアモンスーンと乾燥気候の成立

高原の上昇が夏季アジアモンスーンの成立に与える 影響は全体として非常に大きいが,その影響の現れ方

- * 名古屋大学地球水循環研究センター.
- ** 気象研究所気候研究部.
- © 2007 日本気象学会

は、地域によって異なっている.高原の上昇は、モン スーンの降水域を高原の東南域を中心に、より内陸へ と移行させるが、その地域的な影響は、場所により微

^{第1図 チベット高原の平均高度の変化(M0~M)} に伴う地域ごとの夏季(6~8月平均)アジ アモンスーン降水量(mm/day)の変化.
(a)インド[10-30°N, 70-80°E],(b)東南 アジア[10-30°N, 95-100°E],及び(c)東 アジア[30-45°N, 105-120°E].(d) Webster and Yang (1992)に基づく夏季アジア モンスーン指数, MRI-CGCM Iを用いた数 値実験(Abe et al., 2003)に基づく.

妙に異なっている(第1 図). インドモンスーン域 では, 高原の高さと共にモ ンスーンは強くなっていく が、東南アジアモンスーン は, M4~M6期に最強と なった後、モンスーン降水 量は減少している. これ は、モンスーン循環に伴う 降水域がより内陸に移行す ることに関連している。東 アジアモンスーン域での降 水量は, 高原の高度ととも に増加し、M8のステージ で極大となる.一方,中央 アジア・モンゴルの乾燥地 域の拡大・強化は、 高原の 上昇とともに顕著となり、 同時に東アジア域の降水量 は大きく増加するという, 乾湿気候の東西非対称パ ターンの強化が、高原の北 縁の緯度付近に沿って現れ ることがわかった(第2 図).

3.熱帯太平洋大気・海 洋系の変化

チベット高原の上昇は, 熱帯東西循環(Walker Circulation),あるいは北 太平洋上の亜熱帯高気圧へ の影響を通して,赤道沿い の熱帯大気・海洋系の状態 にも大きく影響している。 高原の上昇とともに,東西 循環が強まり,熱帯太平洋 の大気・海洋系を,より東 西のコントラストの強い状

 第2図 チベット高原の高度変化(M0~M(縦軸))に伴う高原北縁(35~45°N)沿いの(a)夏季(6~8月)平均降水量(mm/day)の東西分布と、(b)各ステージ間における降水量変化(mm/day)の東西分布. 横軸は東経. 暖色系ほど降水量が多い. MRI-CGCM Iを用いた数値実験(Abe et al., 2003)に基づく.

第3図 MRI-CGCM Iの実験で得られた熱帯太平洋の海面水温(℃)分布.
 (a)実験 M0(高原なし).(b)実験 M(現在の高度).(c)チベット高原の高度変化に伴う赤道太平洋の海面水温東西差(115-140°Eの平均から95-80°Wの平均を差し引いた値)の変化.M6から M8ステージで、東西の水温勾配が顕著に増大している.Abe et al. (2004)に拠る.

態,即ち,よりLa Niña 的な状態にしている.特に 第3図に示すように,M6からM8のステージで,東 西の海面水温勾配や東西循環が急に強くなっており, 大気海洋系への影響には,高原がかなり高くなること が必要であることを示している.この結果は,現在の 西太平洋・海洋大陸域の暖水プールの形成にも,高原 の存在が非常に重要であることを示唆している.

4. 冬季アジアモンスーンの成立

東アジアの冬季のモンスーンの形成(地上での北西

"天気"54.5.

季節風の強化,対流圏中上 層での気圧の谷と寒気団の 強化,日本上空のジェット 気流の強化など)もほぼ同 じM4からM6のステージ で大きく変化し,現在の状 熊に近くなることが示され た(第4図).興味深いこ とはこの同じステージに, 現在の冬季のアジアでの大 気循環系を特徴づけるチ ベット高原の南縁沿いの亜 熱帯ジェット気流が出現す ることである. M0から M4までのステージでは、 比較的弱いジェット気流が 高原北方の45°N付近に位 置していたのが、この M4-M6のステージに高原の南 に移動し, 強化されている (第5図). これらの変化 は、 高原の高さが現在のほ ぼ半分になると, 高原の特 に冬季の大気循環に与える 力学的効果が明瞭になって くることを示している.

第4図 MRI-CGCM I で再現されたチベット高原の高度変化に伴う冬季(12~2月)平均の対流圏中層(500 hPa)の平均的な風ベクトル変化.
 陰影部は薄い方から、平均風速が15 (m/s)以下、15~20 (m/s)、20~25 (m/s)、25 (m/s)以上のジェット気流に対応. (a) M0, (b) M2, (c) M4, (d) M6, (e) M8, (f) M の各実験.

ところで、このような高原の高さによる気候、大気 循環系への影響の違いの数値実験結果は、アジアにお ける古気候変化と高原の上昇の関係に関してはどのよ うな意味づけができるであろうか。最近の地球テクト ニクス研究におけるチベット高原上昇開始の年代につ いては、まだその推定に大きな幅があるが、概ね1000 万年±500万年前頃であると主張する研究者が多いこ と、また、上昇過程については、第四紀の氷期開始時 期と現在に近い高度への到達とは、オーダー的に同じ 時期と判断できそうである。

一方,バイカル湖の湖底堆積物や黄土高原レス堆積 物による気候・環境解析研究の最近の成果との対比を 行うと,東アジアの夏季,冬季モンスーンが開始され た時期は,数値実験における高原高度のM4~M6ス テージと対応できそうである。また,この時期は同時 に,第四紀,即ち,氷期サイクルの開始前後ではない かと判断される。これらの推定とテクトニックな推定 とは,整合的であることも明らかになった。レス高原 におけるモンスーン気候と乾燥気候の交替の層序の開 始時期も,高原の力学的効果が顕在化した時期とおそ らく対応していると考えられる(第4章の多田氏の解 説も参照).

5. 環日本海気候の成立

北陸地域を含む日本海側の気候は、冬の季節風の吹 き出しとそれに伴う大量の積雪で特徴づけられる.こ の日本海側の積雪は、春から夏の融雪を通して、この 地域の豊かな水資源を保証し、日本海側の豊かな生態 系と水田稲作に代表される伝統的な農業を維持してき た.では、いつ頃から、このような冬の気候は、どの ように形成されてきたのであろうか.

まず必要な条件は、もちろん、日本海の成立であ る.近年の地質学・地史学的研究は、約1500万年前、 新生代第三紀後半、新第三紀とよばれる時代に日本列 島の回転、折れ曲がりにより形成されたことを示して いる.しかし、豊かな水産資源を含む現在のような日

423

第5図 MRI-CGCM I で再現されたチベット高原の高度変化に伴う冬季(12~2月)平均の対流圏中層(500 hPa)での流れの変化(矢印).
 (上から) M, M8, M6, M4, M2, M0の各実験.中央アジア(80-100°E)における東西平均.陰影部は薄い方から,平均風速が12(m/s)以下,12~15(m/s),15~18(m/s),18(m/s)以上のジェット気流に対応.高原南縁にあるヒマラヤ山脈の緯度(28°N)を太線で示す.

本海になるためには、対馬海峡より暖流が流入し、し かも冬季の大陸からの寒気の吹き出しによる表層水の 冷却で鉛直混合が活発となり、海洋底層が酸化状態に なっていることが重要である(Tada, 1994).即ち, 南(と北)が海峡で開いた海であること、冬季には大 気により十分冷やされることが、豊かな日本海のため に必要な条件である。この条件は同時に、日本海上の 冬の大気に十分な水蒸気と熱の供給をもたらし、日本 海側の地域に大量の雪をもたらす条件ともなってい ある.

約100~200万年前頃に始まった第四紀には、全球的 に非常に寒い氷期と現在のように暖かい間氷期の繰り 返しが10万年程度の周期で繰り返されており、日本海 の海洋・気候もこの全球的な気候変動のサイクルに大 きく影響されてきた(Oba *et al.*, 1991).氷期には日 本海の水位が低下し、海峡が閉じて湖になったため、 無酸素状態の還元的な海洋環境となり、一部の凍結も 含めた冷たい日本海のため、冬季における大気への水

る.

冬のシベリア高気圧に代 表される大陸の寒気団はい つ頃から形成されたのか. これに密接に関わるユーラ シア大陸でのテクトニック な変動が,チベット高原の 成立である. チベット高原 を段階的に上昇させて行っ た私たちの数値実験では, M4~M6ステージで急激 にモンスーン気候となり, M6~M8で、ほぼ現在に 近い状態の冬のモンスーン が出現することが明らかに なった (第6図). とする と,大量降雪を伴う冬の日 本海側の気候が始まったの は,おそらく数百万年前 頃,即ち,第三紀の末の比 較的温暖な気候が卓越した 時期であったとも推定され る.

ただし、冬季に雪となる ためには、冬季の気温低下 が必要であり、この条件が 満たされていたかどうか、 課題として残されている。 日本海沿岸の北陸地域の冬 季気温も、現在降雪として 降る限界である3℃近くに 下がるのがM6ステージ (第7図)であり、これが 第三紀末か第四紀の開始頃 だったのかが今後の課題で

第6図 MRI-CGCM Iで再現されたチベット高原の高度変化に伴う冬季(12~2月)の平均的な日本海上の季節風の変化.
(a) M0,(b) M2,(c) M4,(d) M6,(e) M8,(f) Mの各実験.1000hPaの水平風(矢印)とその風速(陰影).陰影部は薄い方から,平均風速が6~8(m/s),8~10(m/s),10(m/s)以上の領域に対応.

 第7図 MRI-CGCM 1 C円現されたデベット高 原の高度変化に伴う冬季(1月)日本海 沿岸付近(38°N, 140°E)の地上気温変 化.図中 M10は M 実験に対応する。

蒸気や熱の供給が不十分で,日本海側の雪は極端に少 なくなったと推定される.間氷期は,しかし,海面の 上昇,酸化的海洋環境,暖流の流入などにより,現在 のように大雪がもたらされる環境が形成されたはずで ある.冬季の降雪積雪を保証する低温は,全球的な寒 冷化傾向が進行していた第四紀になってはじめて現れ た可能性もあり,とすると,第四紀の間氷期に,日本 海側の積雪を伴う気候が出現したとも考えられる.

巨

6. 今後の課題

気象研究所大気海洋結合気候モデル (MRI-CGCM version I)を用いて、チベット高原の平均高度の違 いが、夏季・冬季のアジアモンスーン気候と熱帯太平 洋域の大気海洋系にどのような影響を与えるかについ ての数値実験を、平均高度を0mから現在の高度 (約5000m)のあいだで4段階に分けて行い、その古 気候学的意味づけを可能な限り試みた、残された最も 大きな問題は、高原の上昇のより正確な編年と古気候 変化との対応づけである.また,今回の数値実験で は、チベット高原だけの高度の違いによる古気候変化 を評価したが、実際には、ほぼ同時期あるいは多少の 時期を違えて、ロッキー山脈やアンデス山脈も隆起し ている。また、350万年前頃には、パナマ地峡の成立 (海峡の閉鎖)による熱帯海洋の大循環の変化も、気 候変化の大きな要素と考えられている。今後は、これ らの地球表層におけるテクトニックな変化に関連した 大気中の CO₂濃度変化や植生変化と、地球軌道要素 の変化などを考慮しつつ、モンスーンアジアの古気候 のモデリングをする必要があろう.

参考文献

- Abe, M., A. Kitoh and T. Yasunari, 2003 : An evolution of the Asian summer monsoon associated with mountain uplift, -Simulation with the MRI atmosphereocean coupled GCM-, J. Meteor. Soc. Japan, 81, 909– 933.
- Abe, M., T. Yasunari and A. Kitoh, 2004 : Effects of large-scale orography on the coupled atmosphereocean system in the tropical Indian and Pacific Oceans in boreal summer, J. Meteor. Soc. Japan, 82, 745-759.
- Abe, M., T. Yasunari and A. Kitoh, 2005 : Sensitivity of the central Asian climate to uplift of the Tibetan Plateau in the coupled climate model (MRI CGCM1), The Island Arc, 14, 378-388.
- Oba, T., M. Kato, H. Kitazato, I. Koizumi, A. Omura, T. Sakai and T. Tanimura, 1991 : Paleo-environmental changes in the Japan Sea during the last 85,000 years. Paleoceanogr., 6, 499-518.
- Tada, R., 1994 : Paleoceanographic evolution of the Japan Sea, Palaeogeography, Palaeoclimatology, Palaeoecology, **108**, 487-508.
- Webster, P. J. and S. Yang, 1992 Monsoon and ENSO Selectively interactive system, Quart. J. Roy. Meteor. Soc., 118, 877-926.