2005年8月15日に東京23区西部で短時間強雨を

もたらした雷雲の解析

河 野 沙恵子*•市 川

寿**•林 広 樹***

1. はじめに

大都市での強雨はしばしば都市型水害を引き起こ し、社会的影響が大きい。都心部を中心に雷雨となり 死者1名となった1999年7月21日の練馬豪雨について は、Seko et al. (2007) で雷雨の発達過程や3次元の 気流構造について詳細に解析されている。本調査で は、2005年8月15日の事例を取り上げ、強雨に至った 経緯や現象の3次元構造を解析する。

この日は東京23区西部を中心に雷雨となり、中野区 ・杉並区・練馬区では床上・床下浸水などの被害が発 生した(東京管区気象台 2005)。12時から24時の積 算降水量分布を第1図aに示す。この雨で、練馬区 のアメダス観測点では15日21時50分までの1時間に58 mmの非常に激しい雨が観測された。

この雷雲は、全体としては南東に進んでいるもの の、帯状に発達した降水域が一時停滞したことによ り、都区西部で局地的な短時間強雨となった。激しい 雷雨は住民や住宅への被害だけでなく、航空機の安全 運航にも大きな影響を及ぼす。本調査では空港気象 ドップラーレーダーの観測データを利用して解析を行 い、雷雲が停滞し大雨をもたらした気流場の特徴を調 査した。

2. 気象状況

雷雨となった15日21時の地上天気図を第1図bに 示す.低気圧が関東地方をゆっくり南へ進んでいた。

- * Saeko KAWANO,東京管区気象台(現所属:気 象庁観測部観測課).
- ** Hitoshi ICHIKAWA,東京管区気象台(現所属: 気象庁地球環境・海洋部海洋気象課).
- *** Hiroki HAYASHI, 東京管区気象台(現所属:岐 阜地方気象台).
- © 2008 日本気象学会

第1図 (a) アメダスおよび気象庁以外の機関の地上観測データによる,2005年8月15日12時から24時までの積算降水量分布図.数値は東京都内のアメダス地点(●印)と90 mm 以上の気象庁以外の機関のデータ(▲印).(b)2005年8月15日21時の地上天気図.

500 hPa では日本付近をトラフが通過,850 hPa では 相当温位342 K 以上の暖湿の場が予想されており,大 気の状態は不安定であった(図略).

この日,関東地方南部は日中晴れて気温が上昇し, 昼過ぎに雷雲が発生・通過した多摩〜秩父地方の山間 部では気温が下がったものの,都区西部を中心とする 平野部では18時になっても30度以上の高温が続いていた.

第2図(834頁)に19時から22時までの全国合成 レーダー降水強度,地上風,高度補正した気温,海面 気圧の分布図を示す.多摩~秩父地方に雷雲の発生し 始めた19時頃,地上の主な風系は,茨城県方面からの 冷たい北東風,秩父方面からの冷たい北西風,東京湾 からの暖かい南風から成り,これらの風が都区部で収 束していた.収束域は周囲より気温が高く,地上天気 図で解析されている低気圧とは別に,局地的な低気圧 が解析される.この高温域と対応した低圧部は雷雲通 過前の20時まで維持されている.都区部では雷雲が通 過した22時には気温が下がり,高圧部に覆われた.

第3図に19時から23時までの東京(大手町)の10分

"天気" 55. 10.

間降水量と積算値,気温,現地気圧,風向風速の地上 観測データ時系列図を示す.19時から20時にかけて は,低気圧へ向かう内陸からの弱い北〜北北東の風が 卓越し,気温は30度以上と高い.20時から雷雲が到達 する21時30分までは,東北東風となり気温が1時間に 2.2度低下し,茨城県方面からの冷気流が到達したこ とが確認できる。その後,雷雲通過に伴い21時30分か ら22時までの30分間に気温が4.3度低下し,気圧は19 時から22時までの3時間に2.7hPa上昇した。また, 練馬では茨城県方面からの冷気流が到達することなく 雷雲が通過していた(図略).

熊谷のウィンドプロファイラによると,高度4km ではトラフの通過に伴い19時頃から西北西風となり, 21時頃にかけて寒気の流入が強まっていた(第4図).

3. 雷雲の気流構造

東京都及びその周辺の気象庁以外の機関の地上観測 データを加えて、都区部周辺の地上付近の気流場をさ らに細かく解析する。第5図は20時と21時の全国合成 レーダー降水強度、地上風、高度補正した気温の分布 図である。都区西部で北西、北東、東風が収束、東京 湾沿岸部では南風が流入し、低気圧性循環が見られ る。また、気温は30度以上と高く、雷雲の発生した北 西側と4度、茨城県方面から冷気の流入する北東側と 6度以上の気温差があり、局地前線を伴った低気圧性 構造が形成されている。

東京航空地方気象台(羽田)と成田航空地方気象台の ドップラーレーダー観測データを合成し,石原(2001) により三次元風を求め, 雷雲の気流構造を解析する. 第6図に, 雷雨となった時間帯の高度1km での水平 風およびレーダー反射強度分布(左),高度3km で の水平風の流線および鉛直速度分布(右)を示す.第 7図は,第6図cおよびfの実線部における断面図を 南西方向から見たものである.

a. 発達期(第6図a~c)

20時21分に高度1kmで北西風と北~北北東風が収 束した多摩地方で降水セルAが発生した。高度3km でも風が収束し、上昇流域となっている。

20時33分には高度3kmで南寄りの風と北寄りの風 とのシヤーライン上に東西の帯状にのびる降水セルB が発生した。このシヤーラインを形成する南寄りの風 の流入は高度1kmでは見られず,高度2~4kmで 見られた。第7図aの黄緑色で示した反射強度45 dBZ等値面によると,降水セルAでは地表から分布 しているのに対し,降水セルBは高度2km付近から 上空に分布している。降水セルBの南側では上昇流 が見られ,最下層では弱い下降流となっている。この ことから,東京湾からの暖かい南風が地表面の茨城県 方面からの冷たい東風に乗り上げて,高度2km付近 から上空にシヤーラインを形成し,それに伴う上昇流 によって降水セルBが発達していると推測される。

b. 最盛期(第6図d~f)

20時57分には降水セルAはほぼ消滅し,降水セル Aに伴う冷気外出流により強化された北西風の前面 に降水セルCが発生した。この降水セルCと降水セ ルBは屈曲した形で見かけ上ひとつになり発達した。 高度3kmでは降水セルBを形成するシヤーラインの 西端に風が収束し,低気圧性回転が明瞭になってい る。その後も降水セルCの冷気外出流前面で雷雲が 発生し,降水セルは南東へ移動した。

21時04分からは、降水セルBのシヤーライン下層 の東風が北西と南西に発散している様子が見られるよ うになる。南西に向かう気流は降水セルCからの北~ 北北西風と合流し、神奈川県東部へ吹き出している。 このため、降水セルBの冷気外出流はシヤーライン 南側の高温域には達することなく、南風の流入は続 き、シヤーラインは同じ場所で維持された。このシ ヤーライン上で降水セルBは停滞し、都区西部では 局地的な短時間強雨となった。

第7図bの反射強度47dBZ等値面によると,低気 圧性回転の中心部の高度2kmまでは空洞部分が見ら れる。回転の中心部では強い収束により上昇流が維持

高度補正した気温(塗 りつぶし),気象官署 による海面気圧(等値 線,0.25 hPa間隔) の分布図.

第4図 2005年8月15日16時から22時までのウィンドプロファイラ熊谷観 測局による風向風速および南北成分の時系列図。

第5図 2005年8月15日20時(左)と21時(右)の全国合成レーダー降水 強度およびアメダスと気象庁以外の機関の気象観測による地上 風,高度補正した気温(等値線)の分布図.図中の四角は第6図 で拡大する領域を示す.

第6図 高度1kmにおける水平風(矢印)および反射強度(左),高度3kmにおける水平風の流線および鉛直速度(右)の分布図.c,fの白矢印は第7図の断面図の視点を示す.aの楕円は収束域,dの実線部はシヤーライン,fの丸印は低気圧性回転の中心を示す.

第7図 第6図cとfの実線部における断面図を 南西方向から見た鳥瞰図.反射強度(塗 りつぶし)および断面に沿った風の水平 成分と鉛直成分の和(矢印)の分布.黄 緑色の立体は反射強度の等値面(上:45 dBZ,下:47 dBZ)を示す。

第8図 今回の大雨をもたらした雷雲の最盛期
における模式図.青色矢印は高度1
km,橙色矢印は高度3km付近の気
流を示す.地形データにはUSGSの
GTOPO30を利用.

されており、この中では雨滴の発達が十分ではなく、 周囲よりエコーが弱くなったと推測される。その周り の高度3km以下では下降流が見られ、強い降水をも たらしている。

c. 衰弱期(第6図g)

21時37分には高温域を形成していた東京湾沿岸に降 水セル B・C が到達し,地表の高温域が消えて南風の 流入も弱まった.高度3km で維持されていたシヤー ラインは南東へ移動し,低気圧性の回転も解消され た.降水セル前面に上昇流域がみられるものの,後面 は下降流域になり,シヤーラインは解消され降水セル B は衰弱,その後南東進していた降水セルも東京湾で 消滅した.

4. まとめ

これまでの解析により、今回の大雨をもたらした雷 雲について以下の特徴が得られ、模式図を第8図に示 す.

雷雨となった15日夜,関東地方では上空をトラフが 通過,下層には暖湿気が流入し、大気の状態が不安定 であった.雷雲発生前,都区部は多摩~秩父地方と茨 城県方面,東京湾からの風が収束するとともに,周囲 より気温が高く,局地的な低気圧が形成されていた。

北西風と北〜北北東風の地上収束により降水セル A が発生.高度3km付近では、北寄りの風と冷たい 東風に乗り上げた南寄りの風により形成されたシヤー ライン上で降水セルBが発生した。

降水セル A の冷気外出流により強化された北西風 前面に降水セル C が発生し,降水セル B と合流して 発達した.降水セル B の地表付近でも下降流により 発散が見られるが、降水セルCからの北〜北北西風 と合流して神奈川県東部へ吹いた。このため、シヤー ラインへの暖湿な南風流入が続き、降水セルBは維 持されて局地的な短時間強雨となった(第8図)。シ ヤーライン上に発達した降水セルBにより冷やされ た空気は南風の流入する方向に吹き出さず、南風流入 の妨げとならなかったことが、同じ場所で強雨が維持 された要因となった。

降水セルが高温域に到達し,都区西部は冷やされて 高圧部となった。南東風の流入が弱まり,雷雲は衰弱 した。

謝 辞

空港気象ドップラーレーダーの解析には田中恵信氏 ・鈴木 修氏により気象研究所で開発された「Draft」 を使用しました。また,第1図aと第5図の部外 データには,埼玉県・千葉県・東京都・神奈川県の大 気汚染状況常時監視データを使用しました。この場を 借りてお礼申し上げます。

参考文献

石原正仁,2001:ドップラー気象レーダーの応用.気象研 究ノート,(200),54-56.

- Seko, H., Y. Shoji and F. Fujibe, 2007 : Evolution and airflow structure of a Kanto thunderstorm on 21 July 1999 (the Nerima heavy rainfall event). J. Meteor. Soc. Japan, 85, 455-477.
- 東京管区気象台,2005:平成17年8月15日の大雨に関する 東京都気象速報。http://www.tokyo-jma.go.jp/sub_ index/bosai/disaster/20050817/20050817.pdf(2008年 6月20日閲覧)。