# 北海道紋別市で行った大気観測における無人航空機の 飛行特性と気象測器の動作状況

平 沢 尚 彦\*·尾 塚 馨 一\*\*·林 政 彦\*\*\*·船 木 實\*

#### 要旨

南極観測での無人航空機の実用化を目指した国内試験として,2005年6月下旬に北海道紋別市で行った高高度飛 行性能試験と気象観測試験の結果に基づいて,無人航空機及び気象測器の動作性能を議論し,観測実施の手順を述 べる。今回の最高高度5700mは,130km/h(約36m/s)の巡航速度で飛行する本無人航空機が,向かい風に抗し て安定な航行が困難になった高度であった。高度の上限が,航空機の揚力による上昇性能ではなく,水平風速が上 空に向かって増加する中で現れる場合があることが分かった。無人航空機観測では飛行経路を予め設定するため, 向かい風を回避することは難しい。対流圏の風速を考慮すれば,強風時の観測や広範囲の観測を実現するために, 目安として巡航速度が100km/h(約30m/s)を越え,加速性能の高い機体が有利である。明星電気製の気象ゾン デとリオン製のエアロゾルカウンターにより,気温逆転層などの詳細な鉛直分布を観測することができた。

#### 1. はじめに

日本の気象関係者によく知られている無人航空機シ ステムとしてエアロゾンデがある(浅沼・玉川 1999; 別所ほか 2002).エアロゾンデは予め設定した数千 kmの経路に沿った観測が可能で,既に実用化されて いる(Holland *et al.* 2001; Inoue and Curry 2004な ど).国内で開発・実験が進んでいるカイトプレーン も既に実績を残している(Watai *et al.* 2006; Yamashita *et al.* 2005など).

国立極地研究所では、南極観測用に無人航空機の実 用化を目指した所内プロジェクトを進めている。人員 が限られる南極では、研究者が直接操作できるシステ ムであることが求められ、大気観測だけでなく地磁気 観測、生物分布観測などの研究活動や、野外行動のた めの海氷・氷床表面状態の監視などの設営面にも用途 が広がる。大気観測としての目標の一つは、大気境界

- \*\* 福岡大学大学院理学研究科.
- \*\*\* 福岡大学理学部.

-2006年1月23日受領--2008年11月11日受理-

© 2009 日本気象学会

層を対象とした地上高2000 m 程度である.標高約 4000 m の南極内陸部においては,海抜6000 m 程度の 飛行性能が要求される。もう一つの目標は,南極大陸 沿岸からカタバ風帯を往復し総観規模の大気場の変動 を把握できる1000 km 以上の航続距離を持つことであ る.

このような目標のもとで,さまざまな地域で飛行及 び計測試験を行ってきた(Funaki 2005;Funaki et al. 2006;船木ほか 2006).2007年3月には,長崎県 上五島で1000 kmの飛行に成功している.2005年6月 27日から29日に北海道紋別市で高高度飛行試験及び大 気観測試験を行なった.我々の試験結果や経験は,南 極観測だけでなく無人航空機を利用した観測を企画す る際の参考になると思われる.そこで,本稿では紋別 市での試験結果に基づいて,現在開発中の無人航空機 と搭載可能となった気象測器の性能を述べる.また, 無人航空機を利用した観測を企画する際の留意点や今 後の課題を記述することを目的とする.

#### 2. 無人航空機と測器の仕様

今回の観測で用いた無人航空機の主な仕様を第1表 に、外観を第1図aに示す.無人航空機は、機体の

2009年2月

<sup>\*</sup> 国立極地研究所.

水平位置(GPSによる)と高度(気圧計及び気温計 による)を認識し、予め設定された空間の点(Way Pointと呼ぶ.以後 W.P.と記す.)を次々に通過しな がら飛行する.航空機には W.P.に向かって方向舵や エンジン出力を調節するための自動航行装置が搭載さ れている.通信が確保されていれば、飛行中にでも W.P.の修正や制御条件の変更を行える.

機体の大きさや重量はエアロゾンデ(Holland et al. 2001)とほぼ同じであるが、エアロゾンデと異なり自力滑走での離陸が可能である.巡航速度は130 km/h である.滞空時間は燃料(飛行距離)と搭載測器の兼ね合いで決まる.

気象測器について第2表に、測器の搭載状況を第1 図bに示す。気温及び湿度の観測には明星電気製の 高層気象ゾンデ(以下,ゾンデ,ゾンデ気温など)を 利用し,データロガーに記録した。航空機の上昇率を ゾンデと同程度の5m/s前後に設定することで,十

| 項目     | 仕様・性能                     |  |  |  |  |  |  |
|--------|---------------------------|--|--|--|--|--|--|
| 種類     | 模型航空機(単発固定翼)              |  |  |  |  |  |  |
| 動力     | 86 cc 2 気筒 2 サイクルガソリンエンジン |  |  |  |  |  |  |
| 大きさ    | 全長2.2m, 全幅2.7m, 全高0.72m   |  |  |  |  |  |  |
| 総重量    | 12 kg(空燃料)                |  |  |  |  |  |  |
| 滞空時間   | 9 時間                      |  |  |  |  |  |  |
| 航続距離   | 1000 km                   |  |  |  |  |  |  |
| 巡航速度   | 130 km/h                  |  |  |  |  |  |  |
| 最大上昇速度 | 180 m/min.                |  |  |  |  |  |  |
| 操縦     | 無線による遠隔操作,および搭載コン         |  |  |  |  |  |  |
|        | ピュータによる自動操縦               |  |  |  |  |  |  |
|        | (フジインバック(株) 資料に上ろ)        |  |  |  |  |  |  |

第1表 無人航空機の仕様.

分な測定精度が得られると考えた. 軽量,低価格とい う特徴は,無人航空機観測に適している.機体底面か ら外部に露出した気温・湿度センサーのうち,気温セ ンサーは離陸後10分程度で半田固定されている部分か ら脱落した.後日,気温・湿度センサー部分をステン レス管に入れることでこの問題は解決した.高度算出 用に機体に搭載された気温計の計測値(以下,機体気

第2表 搭載測器の仕様 (メーカーのカタログからの 抜粋).

| 測定項目   | 仕          | :様・性能                              |
|--------|------------|------------------------------------|
| 気温     | 明星電気製 気象ゾン | ノデ (RS-01G), サーミスタ                 |
|        | 温度範囲       | $-90^{\circ}C\sim$ $+45^{\circ}C$  |
|        | 計測間隔       | 1秒                                 |
|        | 精度         | ±0.5°C                             |
| 湿度     | 明星電気製 気象ゾ  | ンデ (RS-01G),静電容                    |
|        | 量式湿度計      |                                    |
|        | 湿度範囲       | $0 \% RH \sim + 100 \% RH$         |
|        | 計測間隔       | 1秒                                 |
|        | 精度         | $\pm$ 7 %RH                        |
| エアロゾル  | リオン製 KR12  |                                    |
| カウンター  | 測定粒径(直径)   | 0.3, 0.5, 0.7, 1.0, 2.0,           |
|        |            | 5.0 µm                             |
|        | 流量         | 2.83 ℓ /min.                       |
|        | 個数濃度       | 70000個/ ℓ                          |
|        |            | (0.3 µm 測定時, 計数損                   |
|        |            | 失5%)                               |
|        | 計測間隔       | 10秒                                |
| 気温(機体) | 松下製 サーミスタ  | (ERTG1 AHJ103)                     |
|        | 温度範囲       | $-20^{\circ}C\sim +40^{\circ}C$    |
|        | 計測間隔       | 1秒                                 |
|        | 精度         | $\pm 1^\circ\mathrm{C}$ ( at 25°C) |
| 気圧(機体) | フジクラ製 絶対圧  | センサー (FPM-15 PAR)                  |
|        | 定格圧力       | 346.6 hPa~1680 hPa                 |
|        | 計測間隔       | 1秒                                 |
|        | 圧力ヒステリシス   | 0.2%FS                             |
|        |            |                                    |



第1図 (a) 無人航空機の外観と(b) 測器搭載スペース。

"天気" 56. 2.

 $\mathbf{4}$ 

温)の精度についても4章で議論する、気球によるラジオゾンデ観測値との比較は今後の課題である。

エアロゾルカウンターはリオン製の KR12を使用した.計測粒子粒径は直径0.3  $\mu$ m から5.0  $\mu$ m までの6種類に分類される.測器内部に吸入された空気の温度と湿度(以下,KR12気温など)の計測も行う.外気の引き込みは第1図に示すように機首から銅管を通した.銅管内への外気の流れ込みに対する抵抗を減らすことと,KR12に送られる大気流量を安定化させるために,機体内での銅管とKR12の繋ぎに隙間をもたせ,余分な流入大気を流し出した.

#### 3. 飛行試験の概要

3.1 飛行試験サイト

無人航空機の離着陸には北海道紋別市の旧紋別空港 滑走路を使用した。第2図に示したように、オホーツ ク海に面した海岸に隣接している。滑走路から約2 km内陸側には国道238号線があって、この地域の幹 線道路として交通量は少なくない。飛行ルートは、国 道238号線と接触せず、通信に関する利点から滑走路 を中心とし、陸側と海側をほぼ二分した。また、滑走 路から約10 km 離れたオホーツク紋別空港での定期便 (羽田間の1往復)の発着時刻には観測飛行を避けた。

#### 3.2 飛行試験の概要

飛行試験は、第3表に示すように、2005年6月27日 に1回、28日に4回、29日に3回行った。比較的短時 間で観測が実施でき、したがって1日に複数回の観測 ができることは、有人航空機より有利な面である。

高高度を目的とした飛行は28日の第1回目と第3回 目で、最高高度はそれぞれ約4000mと約5700mで あった。どちらの試験も向かい風の領域でW.P.に近 づけない状態になった。このことは、対地速度が50 km/h (約14 m/s) を下回っていることからも示唆される. 無人航空機の最高高度が水平風速に関連することについて, 4.1節でさらに議論する.

測器の動作状況では,高度5700m以上に達した観 測でゾンデとデータロガー間の結線不具合によりデー タ記録が出来なかった(×印で表示).28日の第1回 目と第3回目では飛行中にゾンデの気温センサー部分 が脱落した.

3.3 航空関連部署への連絡

現在の航空関連の法規では,無人で総重量が100 kg 以下の航空機で,高度250 m(航空路近傍では150 m)を超えない場合には届け出の必要はない。しか し,一般に我々が観測目的で行う場合には,観測地域



第2図 飛行試験の離着陸地点(旧紋別空港)の 位置。

第3表 飛行試験の概要.飛行記録の極値を下線で示す.気象測器の試験結果について、良好:○,非搭載:-,ゾ ンデ信号ケーブルの接触不良:×,ゾンデ気温センサー部分の脱落:△で示す.

|          | 飛行            | 具古古庙      | 最小対地        | 最大大気         | 具任与泪         | 搭載センサーの動作    |            |            |                  |            |             |            |             |            |            |
|----------|---------------|-----------|-------------|--------------|--------------|--------------|------------|------------|------------------|------------|-------------|------------|-------------|------------|------------|
| 月日(当日回)  | 時刻(JST)       | 時間<br>(分) | 取同同反<br>(m) | 速度<br>(km/h) | 速度<br>(km/h) | 政臣×证<br>(°C) | 機体<br>気圧   | 機体<br>気温   | ゾンデ<br>気温        | ゾンデ<br>湿度  | でKR12<br>気温 | KR12<br>湿度 | KR12<br>OPC | カメラ        | 飛行目的       |
| 6月27日(1) | 16:55-17:11   | 16        | 2048        | 45           | 174          | 8.9          | 0          | 0          | -                | -          | -           | -          | -           | -          | 立ち上げ       |
| 6月28日(1) | 10:22-11:19   | 57        | 4019        | 48           | 165          | -4.8         | 0          | 0          | $\bigtriangleup$ | 0          | $\bigcirc$  | 0          | 0           | _          | 高高度        |
| 6月28日(2) | 13:14 - 13:40 | 26        | 214         | 75           | 157          | 11.9         | 0          | 0          | -                | -          | —           | -          | -           | $\bigcirc$ | カメラ撮影      |
| 6月28日(3) | 15:56 - 16:51 | 55        | 5722        | 31           | 183          | -13.8        | $\bigcirc$ | 0          | $\times$         | $\times$   | $\bigcirc$  | 0          | $\bigcirc$  | -          | 高高度        |
| 6月28日(4) | 18:15-18:42   | 27        | 221         | 86           | 191          | 12.9         | 0          | 0          | _                | -          | _           | -          | -           | $\bigcirc$ | 高速         |
| 6月29日(1) | 10:05-10:37   | 32        | 2007        | 27           | 178          | 4.6          | 0          | 0          | -                | 0          | $\bigcirc$  | 0          | 0           | -          | 気象観測       |
| 6月29日(2) | 14:05-14:55   | 50        | 3694        | 63           | 209          | -0.3         | 0          | $\bigcirc$ | _                | 0          | 0           | 0          | $\bigcirc$  | -          | 気象観測<br>高速 |
| 6月29日(3) | 17:37 - 18:04 | 27        | 2002        | 66           | 169          | 5.5          | $\bigcirc$ | 0          | -                | $\bigcirc$ | $\bigcirc$  | $\bigcirc$ | $\bigcirc$  | 0          | 気象観測       |

2009年2月

| 連絡時期    | 連絡先        | 連絡内容と方法           |  |  |  |  |  |  |
|---------|------------|-------------------|--|--|--|--|--|--|
| 事前連絡    | 釧路空港事務所    | 飛行通報書,計画書の<br>提出  |  |  |  |  |  |  |
|         | 紋別市役所      | 同上                |  |  |  |  |  |  |
|         | 離着陸地点所有者   | 同上                |  |  |  |  |  |  |
|         | 新千歳空港      | 連絡体制確認            |  |  |  |  |  |  |
|         | 札幌管制部      | 同上                |  |  |  |  |  |  |
| 細測期間知口  | 紋別市役所(以下,市 | 観測期間開始の連絡         |  |  |  |  |  |  |
| 戰倒朔间仍口  | 役所)        | (電話)              |  |  |  |  |  |  |
|         | 警察         | 同上                |  |  |  |  |  |  |
|         | 消防         | 同上                |  |  |  |  |  |  |
|         | 新千歳空港      | 同上                |  |  |  |  |  |  |
|         | 海上保安部      | 同上                |  |  |  |  |  |  |
| 観測期間各日  | 新千歳空港対空通信卓 | 開始前の連絡 (電話)       |  |  |  |  |  |  |
|         |            | 離陸予定時刻の連絡         |  |  |  |  |  |  |
| 離陸15分前  | 新千歳空港対空通信卓 | (電話)              |  |  |  |  |  |  |
|         |            | 定期便の時刻確認          |  |  |  |  |  |  |
|         | 札幌管制部・管制官  | 離陸予定時刻の連絡<br>(電話) |  |  |  |  |  |  |
| 着陸直後    | 新千歳空港対空涌信貞 | 着陸の連絡 (雷話)        |  |  |  |  |  |  |
| ALLER   | 札幌管制部・管制官  | 同上                |  |  |  |  |  |  |
| 緊急時     | 市役所        | 緊急内容(電話)          |  |  |  |  |  |  |
|         | 警察         | 同上                |  |  |  |  |  |  |
|         | 消防         | 同上                |  |  |  |  |  |  |
|         | 新千歳空港対空通信卓 | 同上                |  |  |  |  |  |  |
|         | 釧路空港事務所    | 同上                |  |  |  |  |  |  |
|         | 海上保安部      | 同上                |  |  |  |  |  |  |
| 観測期間最終日 | 市役所        | 観測終了の連絡(電話)       |  |  |  |  |  |  |
|         | 新千歳空港対空通信卓 | 同上                |  |  |  |  |  |  |
|         | 釧路空港事務所    | 同上                |  |  |  |  |  |  |

第4表 観測実施に関わる連絡先と連絡内容。

の航空関連部署や役所などには事前に連絡し,了承を 得ておきたい.航空関連部署への連絡は,観測地域を 管轄する空港事務所に航空機の性能や飛行の目的など を記述した飛行通報書で申請する.観測現場からの連 絡を行なうため,携帯電話は必須である.今回の観測 で我々が事前及び当日に連絡を行った機関とその内容 を第4表に示す.

#### 4. 飛行試験の結果

#### 4.1 高高度飛行試験

ここでは、高高度飛行試験として高度5700 m以上 に達した28日第3回目の飛行について述べる。第3図 に航空機の高度と目標高度の時間変化を示す。航空機 は、目標高度の変更に応じてそこに向かって最高出力 で上昇する。高度5700 m付近の上昇率は約2 m/s で あり、上昇能力は残している。

水平位置の航跡を第4図に示す.離陸し自動飛行に 移るとW.P.-0 (図中の<sup>①</sup>)を目指し,その後はW. P.-1 (同,①),W.P.-2 (同,②) と順番に通過す る.航跡の途切れは通信不具合による欠測である.

観測期間中の主風向は北から北西であり、向かい風







 第4図 2005年6月28日第3回飛行試験(高高度 飛行試験)のW.P.(円内数字で示す)
と航跡(実線).航跡の途切れはデータ
通信不具合による欠測部分に対応する。

を受ける W.P.-4~6付近で対地速度が落ちる.W. P.-6付近でコースを大きく逸れた航跡は,強い向か い風にあおられたことを示している.概して,水平風 が強い領域では風の乱れが比較的大きく,従って航空 機の姿勢は乱されやすい.巡航速度と同程度の大きさ の向かい風中で航空機の姿勢が乱れた場合,W.P.の 通過がさらに困難になり,墜落の可能性がでてくる. 本稿ではこれを臨界風速と呼ぶ.臨界風速は,エンジ ンの加速性能や航空機の空力的な性質,更に風の乱れ の状態などの様々な条件から決まる.ここでは,巡航 速度を臨界風速の目安として使う.

鉛直分布観測では、一般に直径数 km の周回経路が 設定され、航空機が向かい風を受けて進まなければな らない経路が必ずある。通常の無人航空機の巡航速度 は対流圏の水平風速と同程度の大きさで、上空に向 かって風速が増す大気中を上昇するうちに臨界風速に 達することがある。それは揚力による上昇能力の限界 とは異なるものである。鉛直分布観測以外であって も、無人航空機観測では飛行経路を予め設定するた め、向かい風を回避することは難しい。

追い風の場合には、風速と巡航速度の合計で対地速 度が速くなり、W.P.での方向転換が難しくなる.W. P.-1~2付近では方向転換しきれずにコースを逸れ て航跡が蛇行している.直線的な飛行経路が設定でき る観測であれば、方向転換に関わる困難は回避でき る.

#### 4.2 気温

ゾンデ気温,機体気温,KR12気温の3つの測定 データが揃った28日第1回目の結果を第5図に示す. ゾンデ気温は上昇時の高度約1400mまでの測定値が ある.地上から高度500m付近までは高度とともに気 温は下降し,高度500mから600m付近に約3°Cの気 温逆転層があった。その上空では高度とともに気温は 下降した。気温逆転層より上空の高度900mから1400 mにおいて,上昇時のゾンデ気温と機体気温を比較 すると,その差はほぼ一定で機体気温を力が平均的に 約1.7℃高い。この値を用いて機体気温をゾンデ気温 相当に補正することが可能である。気温逆転層より下 方の高度でも同程度の差が観測されている。

上記の差とは別に、上昇時に機体気温で測定された 気温逆転層は、その底部がゾンデ気温と同じく高度 500 m 付近であるのに対し、頂部は高度約800 m 付近 である。これは、機体気温計の時定数の方が大きいた めと考えられる。気温逆転層のような空間的に気温変 化率が大きな特徴を、機体気温により議論する際には 注意を要するが、一定高度間隔(今回は300 m とし た)で定高度飛行することにより精度を向上させるこ とができる。

KR12で測定された気温は、一般に粒子数を測定す る測器内部環境の温度をモニタする目的で使われる。 外気温が下がるほど KR12気温との差が大きくなる傾向は、機体内部が保温的な性質を持つことを示唆す



温,白丸:機体気温(上昇時),黒丸: 機体気温(下降時),白三角:KR12気 温を示す.



# る.

#### 4.3 湿度

第6図は28日第1回目の観測結果を用いて,ゾンデ とKR12から計算された比湿の関係を示す.KR12の 比湿はゾンデの95-85%程度で,回帰直線の相関係数 は0.99であった.KR12内部に吸引した大気中に存在 する雲粒やエアロゾル粒子からの蒸発量が多ければ大 気比湿に比べてKR12から計算された比湿が多くなる から,この違いはまた別の理由によるものであろう. 原因は分からない.しかしながら,KR12で測定され る気温,湿度から外気の湿度を推定できる可能性を示 している.

4.4 粒子数濃度

第7図には高度5700m以上に達した28日第3回目 観測時の粒径別粒子数濃度(個/0.47ℓ)の鉛直分布





を示す。粒子数濃度は粒径帯毎(例えば,直径0.3 μmから0.5μmの間)の粒子数濃度で示す。各粒子 ともに高度200m付近の雲底に向かって高度とともに 粒子数濃度が増加する。1000m以上の層では雲底付 近の10分の1から100分の1程度の値を示す。

高度200 m から500 m (第7 図中の灰色部分)では 計数不能であった。同様の特徴は,雲層が比較的明瞭 であった28日第1回目観測及び29日第3回目観測でも 見られており,この層内で雲粒子を吸入したことによ る影響と考えている。湿度測定が行えた29日第3回目 観測では,計数不能の層と相対湿度が約100%の層と が重なっており(第8 図),計数不能の状況は雲の存 在の傍証としての利用ができそうである。

#### 5. まとめと考察

本稿では,高高度試験を通して無人航空機及び気象 測器の動作性能を議論し,観測実施の手順を述べた.



 第8図 2005年6月29日第3回目飛行試験時の
(左)相対湿度と、(右)直径0.3μmから0.5μmの間の粒子数濃度(個/0.47 ℓ)の鉛直分布. 灰色は計測不能だった 層を示す。

今回の最高高度5700 m は,130 km/h (約36 m/s)の 巡航速度で飛行する本無人航空機が,向かい風に抗し て安定な航行が困難になった高度であった。これによ り,高度の上限が,航空機の揚力による上昇性能では なく,水平風速が上空に向かって増加する中で現れる 場合があることが分かった。無人航空機観測では飛行 経路を予め設定するため,向かい風を回避することは 難しい。対流圏の風速を考慮すれば,強風時の観測や 広範囲の観測を実現するために,目安として巡航速度 が100 km/h (約30 m/s)を越え,加速性能の高い機 体が有利である。巡航速度の高速化は観測時間内で飛 行距離の延長につながり,加速性能の高さは離着陸時 の地上風速の制約を緩和する効果も持つ。

観測機器として明星電気製の気象ゾンデとリオン製 のエアロゾルカウンター(KR12)を試験した.ま た,航空機搭載の気温計の測定値やエアロゾルカウン ター内部の気温,湿度測定値を比較した.上昇率を5 ~10 m/s程度とし,一定高度間隔で定高度飛行をす ることにより,気温逆転層などの鉛直方向の特徴を捉 えた.雲層の中でエアロゾルカウンターが測定不能に なる場合があり,雲の存在を示す参考データとして利 用できる可能性があることが分かった.

今回の無人航空機は,係留気球観測では不可能な風速30 m/s程度の大気層の観測を実現し,有人航空機 観測より高い空間的・時間的分解能のあるデータを取得した。

#### 謝 辞

紋別市役所の長谷川 恒氏, 濱岡荘司氏, 及び北見

"天気" 56. 2.

工大寒冷地工学科の舘山一孝氏には観測の実現に協力 いただきました。コンティネンタル・テーベス社(ド イツ)の大城 浩氏には滑走路を提供していただきま した。フジインバック株式会社の田辺誠治氏には今回 の観測を共同で進めていただきました。ここに深く感 謝いたします。この飛行試験は国立極地研究所所内プ ロジェクト「南極観測用自律型無人航空機Ant-Planeの開発研究」及び「All-in-one型無人飛行機 と氷床用離着陸装置の開発研究」の助成を受けまし た。

#### 参考文献

- 浅沼 順,玉川一郎,1999:チベットで飛ばせなかったラ ジコンヒコーキの話.天気,46,301-306.
- 別所康太郎,中澤哲夫,CATT エアロゾンデ観測グルー プ,2002:宮古島近海で台風を観測したラジコンヒコー キの話,一運輸施設整備事業団(CATT)によるエア ロゾンデ観測実験報告ー.天気,49,251-257.
- Funaki, M., 2005 : A trial of aeromagnetic survey by a small unmanned aerial vehicle at Mt. Chokai Volcano, Japan. 10 th Scientific Assembly of the International Association of Geomagnetism and Aeronomy. July, Toulouse, France.
- Funaki, M. and Ant-Plane Group, 2006 : Development of small unmanned aerial vehicles (UAV) and an

onboard magnetometer for the aeromagnetic survey. International Symposium on Airborne Geophysics 2006 (ISAG2006), January, AST Tsukuba Center, Tsukuba, Japan.

- 船木 實, Ant-Plane Group, 2006: 南極観測用小型無人 航空機 Ant-Plane の開発-その可能性と課題-. 南極 資料, 50, 212-230.
- Holland, G. J., P. J. Webster, J. A. Curry, G. Tyrell, D. Gauntlett, G. Brett, J. Becker, R. Hoag and W. Vaglienti, 2001 : The Aerosonde robotic aircraft : A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82, 889–901.
- Inoue, J. and J. A. Curry, 2004 : Application of Aerosondes to high-resolution observations of sea surface temperature over Barrow Canyon. Geophys. Res. Lett., 31, L14312, doi: 10.1029/2004 GL020336.
- Watai, T., T. Machida, N. Ishizaki and G. Inoue, 2006: A lightweight observation system for atmospheric carbon dioxide concentration using a small unmanned aerial vehicle. J. Atmos. Ocean. Tech., 23, 700–710.
- Yamashita, K., M. Hayashi, M. Irie, K. Yamamoto, K. Saga, M. Ashida, K. Shiraishi and K. Okabe, 2005 : Amount and state of mineral particles in the upper mixed layer and the lower free troposphere over Mt. Raizan, southwestern Japan : Unmanned airplane measurements in the spring of 2003. J. Meteor. Soc. Japan, 83A, 121-136.

## Performance of the UAV and the Meteorological Instruments in the Experimental Flights for Atmospheric Observation at Monbetsu in Northeastern Hokkaido

### HIRASAWA, Naohiko\*, OZUKA, Keiichi\*\*, HAYASHI, Masahiko\*\*\* and FUNAKI, Minoru\*

- \* National Institute of Polar Research, Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan.
- \*\* Graduate school of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan.
- \*\*\* Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan.

(Received 23 January 2006 ; Accepted 11 November 2008)