

空港気象ドップラーライダーによる非降水低層 ウィンドシアーの観測

山 本 健太郎*

1. はじめに

気象庁は,空港気象ドップラーライダー (LIDAR) を2007年4月に東京国際空港(羽田空港)に,また 2008年4月に成田国際空港(成田空港)にそれぞれ設 置し運用を開始した(第1図).

LIDAR は,空港気象ドップラーレーダー (DRAW)と同様の観測原理で風の観測を行ってい る.DRAWは電波を用いてその反射・散乱を元に観 測を行うのに対し,LIDARは光を使って観測を行う 点が特徴である。光を使ったレーダーであることから 光波レーダー,あるいは光がレーザーであることから レーザーレーダーとも呼ばれる。

気象庁の LIDAR では, 2 μm の赤外光を使用して エーロゾルの動きを観測することにより,半径約10 km の範囲で風の観測を可能としている.これにより 非降水時における空港周辺における風の観測を行い, 航空機の離着陸に大きな影響を与える低い高度での風 向変動である低層ウィンドシアー(LLWS)等を検 出できることが最大の利点である.

しかしながら,LIDAR は非降水時のLLWSの検 出に非常に有効である一方で,使用するレーザー光 (赤外光)が水粒子中で急速に減衰するため,降水が ある場合には観測の範囲が狭くなる特性も持ってい る.

従来,航空機の離着陸に影響を与える LLWS 等の 情報を航空局に提供していたものは DRAW による検 出情報だけであった。しかしながら,DRAW で検出

© 2009 日本気象学会

ができるのは降水現象がある場合だけに限られてい る.実際の航空機からの操縦士報告(PIREP)にお いて,降水時にLLWSの報告がある割合は全体の3 割程であり,非降水時の割合は7割に達している(東 京航空地方気象台 2005).

現在では DRAW と LIDAR のそれぞれの特性か ら,降水時には DRAW, 非降水時には LIDAR を主 とした観測成果を利用することにより,全天候に対応 した LLWS の観測が可能となった.

今回,羽田空港および成田空港に整備した LIDAR は、Lockheed Martin Coherent Technologies 社製 の「Wind Tracer」と呼ばれる LIDAR である。同社 製の LIDAR は、ラスベガスのマッカラン国際空港、 ドイツのフランクフルト国際空港、香港の香港国際空 港などにも設置され運用が行われている。特に、香港 国際空港では 2 台の LIDAR が設置され、観測範囲を それぞれ空港の北側と南側に分割して観測を行い、こ れらを用いて世界初の LIDAR を利用した LLWS 検 出システム(LIWAS)が開発され、2005年末より運 用されている。このシステムによる過去 3 年間の運用 期間中における LLWS の検出率は、PIREP に報告の あった LLWS の出現回数と比較すると全体の76%で あり、航空機の安全に大きく寄与しているという報告 がなされている(Shun and Chan 2008)。

気象庁においても2008年7月3日05JSTから,羽 田空港および成田空港でDRAWとLIDARの観測成 果を一元化することにより航空機の離着陸に影響を与 えるLLWSの検出情報を降水現象の有無に関わらず 航空局へ常時提供しており,これを元に航空局により 作成されるLLWS情報文を通じて航空機へ情報の提 供が行われている.また航空気象情報提供装置

^{*} Kentaro YAMAMOTO,気象庁観測部観測課航空気 象観測室(現在 観測システム運用室).

第1図 空港気象ドップラーライダー概観および設置場所(Google マップ より)(左:羽田空港,右:成田 空港).

(MetAir) を通じて両空港 LIDAR の観測画像を民間 航空会社に対し提供している。

本稿では、LIDARの基本的な原理や特性、羽田及 び成田における LIDAR を用いた観測事例を紹介す る.

2. 基本性能と原理

第1表に、LIDARの基本性能について記載する.

LIDAR の基本的な動作原理は、レーザー光(赤外 光)のパルスを発生させて大気中に放射し、その一部 がエーロゾルに反射して戻るまでの時間差から反射し たエーロゾルまでの距離の測定を行うというものであ る。更に元のパルスの周波数と反射光の周波数の偏移 (ドップラーシフト)を測定することができる。この ドップラーシフト)を測定することができる。この ドップラーシフトは、そのエーロゾルが持つ速度のう ち、動径方向に近づく、もしくは遠ざかる方向の成分 により発生する。この周波数偏移を解析することによ り、エーロゾル粒子の持つ速度の動径方向成分を測定 することが可能となる。

実際には得られる信号データを特定のサンプル数毎 に一つのレンジゲートとして区切り,各ゲート毎にス ペクトル解析を行う.ここでスペクトルのピーク値が

基本性能		
最大観測距離	約10 km	
最小観測距離	約400 m	
距離分解能	約50~100 m	
測風精度	0.5~1m/s (距離に依存)	
観測間隔	約2分 (スキャンシーケンスに よる)	
観測データ	ドップラー速度 速度幅, SNR 後方散乱	
送受信機性能		
レーザー波長	2.0 µm (赤外光)	
レーザーパルスエネル ギー	2 mJ(標準値)	
ビーム開口径	10 cm	
ビームサイズ	7.125 cm (1/e ²) 5.1 cm (1/e)	
ビーム集束範囲	コリメート	
パルス幅	425 nsec	
パルス繰り返し周波数	500 Hz	
平均出力	1 W	
パルスピーク出力	4.8 kW (400 nsec)	

2009年10月

第1表 LIDARの基本性能と送受信機の性能。

第2図 ドップラー速度と速度幅の算出概念図.

得られる所を,各ゲートに おける風速(ドップラー速 度)とし、また各ゲートの スペクトルの広がり方から 風の乱れ具合を示すスペク トル幅 (速度幅)を求めて いる (第2図). 更に, こ れらのデータを元に DRAW と同様にシアーラ インの検出を行っている (石原 1997). これらの データのほか,LIDAR で はエーロゾルによる後方散 乱の大きさを示す後方散乱 値 (WindTracer 独自の無 次元値)やS/N比を求め ている.

2007年3月~12月に羽田 空港の LIDAR で得られた 風速(ドップラー速度)を 航空機自動観測データ

 第3図 羽田 LIDAR のドップラー速度と ACARS 風速データとの比較(2007 年3月~12月)(左:仰角0.7度,右:仰角2.0度). ACARS データは LIDAR データと高度が一致しないため、LIDAR データの上下に存在 する ACARS データを線形内挿した値を使用した。また、LIDAR の風 速データはドップラー速度のため、ACARS データは LIDAR の動径成 分に変換した。参考値は同手法で行った赤枝(2001)による DRAW の 結果を示す。

(ACARS:全日本空輸・日本航空)と比較したところ,第3図に示すように非常に観測精度が高いことが

わかった。根平均二乗誤差(RMSE)がDRAWでは 2.3~3.3 m/s(赤枝 2001)に対してLIDARでは

"天気" 56. 10.

850

54

0.99~1.02 m/s と誤差が半分以下となっている.また,95%信頼区間の上限と下限の幅は平均3.78 m/s であるが,ACARSの風速測定値の95%が4.12 m/s 以下の誤差を有しているとされるため(立平・鈴木 1994),LIDAR と ACARSの差は ACARS データの 精度によるところが大きいと考えられる.

3. LIDAR による観測方法と観測特性

観測のパターンは,第2表のとおり羽田空港と成田 空港では異なったものとしている.

	羽田空港	成田空港
1	仰角2.0° (PPI)	仰角1.0° (PPI)
2	仰角0.7° (PPI)	磁方位336° (RHI)
3	仰角0.3° 格納庫下流 (PPI)	仰角45.0° (PPI)
4	仰角0.0° 格納庫下流 (PPI)	仰角3.0° (PPI)
5	南西部 着陸経路 観測	仰角2.0° (PPI)
スキャン時間	合計 1分57秒	合計 2 分28秒

第2表 LIDAR の観測パターン.

2月

8F

-

-1月

7月

羽田空港の LIDAR は空港敷地外の北西部に設置さ れており、そこから羽田空港で南北に延びる西側滑走 路の南端付近において、北東風時に格納庫によって発 生する羽田特有の乱流を詳細に観測するパターンが含 まれていることが特徴である。

また,成田空港の LIDAR は南北に延びる二つの滑 走路のうちの西側滑走路の真横に設置されているた め,同滑走路の北側の航空機の着陸経路に沿った断面 図を観測していることが特徴である.

この様なパターンで LIDAR は非降水時の風の観測 を行っているが,非降水時であっても大気の状態によ り観測範囲が大きく変化し常に最大観測距離10 km を 観測できるわけではない.

第4図に,非降水時における羽田空港のLIDARの 探知距離の変化について示す.ここで探知距離とは LIDARが60%の確率で観測が可能な地点までの距離 の全方位平均である.これは実際の観測画像を人が見 た時に,感覚的に捉える観測距離に近い値を示す.こ のLIDARの探知距離は1年を通じて日中に長くな り,夜間や早朝には短くなる傾向が見られる.また月 によっては非常に探知距離が短い時期もあることがわ かる.この探知距離の変動は大気中のエーロゾルの分 布に依存していると考えられ,実際にLIDARで得ら れているエーロゾルからの後方散乱値と探知距離は高 い正相関を示している.第4図で示した探知距離と観 測された後方散乱値(LIDARから半径6km平均) との間の相関係数は,0.96となった.また,この後方

> 散乱値を用いて山本 (2008)では視程の計測を 行っており,滑走路視距離 計(RVR)で計測した視 程との相関が0.8~0.9と高 くなっている.これらの比 較より,LIDARは大気中 のエーロゾル等の分布状況 を捉えており,その分布が LIDARの探知距離に影響 している事が伺える.しか しながら,探知距離の変動 に直接影響するエーロゾル の種類などは現在のところ 分かっていない.

このほか,第5図に示す ように降水時には水粒子に

9.0 9.0 1.5 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 時間(UTC)

- - - 3月

-4月

10月

5月

11月

-6月

12月

第4図 月毎の探知距離の日変化(羽田 LIDAR, 2007年1月~12月).

10.0

[※] PPI:円錐面観測, RHI:鉛直断面観測

mm/h以下,並雨3mm/h~15mm/
h).図中のパーセンテージは同時刻の
非降水時の探知距離との比率を示す。
2007年9月,10月の羽田 LIDAR のデー
タによる。

 第6図 羽田 LIDAR による霧の観測事例 (2007 年6月11日2054 (UTC)). 霧のため, ほぼ何も観測されていない.

よる赤外光の減衰に伴い探知距離が短くなっており, 降水強度が強くなるにつれて探知距離が短くなる特性 を持っている。また同じ大気水象でも,第6図に示す ように霧の場合などには降水時よりも赤外光の減衰が 激しく,全く観測ができない状態となる。これは霧雨 の場合にも類似の傾向が見られた。

4. 空港気象ドップラーライダーの観測例

第7図はそれぞれ羽田空港と成田空港において

PIREP より LLWS の報告がなされた時の観測データ である.

a) 成田空港におけるシアーライン発生事例

第7図aは2008年4月12日にシアーラインが北か ら南に通過した際のドップラー速度の観測データであ る.空港の北にはっきりとしたシアーラインが捉えら れ、その断面構造も捉えることができている.同時間 には、10kt(=5.1 ms⁻¹)の風速変動をもつウィン ドシアーが、高度1000~300 FT(=300~90 m)で西 側滑走路北端への最終進入域に存在しているとの PIREPの報告がなされており、LIDARにより観測 された LLWS と一致していた.また、このシアーラ インは成田空港の北から南へと通過をしていったが、 LIDAR ではその様子を常に捉え続けることができ た.このシアーラインの移動速度から、シアーライン が空港を通過する際に、風向変動が発生する時刻を予 測することもできた.

b) 羽田空港の格納庫等の影響による乱流

2007年9月5日から6日において台風第9号が接近 し、その際に羽田空港ではゴーアラウンド(到着機の 進入継続が安全でないと判断される場合の着陸のやり 直し)が行われたり、LLWSのPIREPが多く報告さ れたりした。第7図bの右図は、その時の羽田空港 の西側滑走路南端付近を観測した速度幅データの拡大 図である。この時、格納庫の下流において建物の影響 と思われる速度幅の値の大きい領域が発生していた。 この速度幅の値の大きさは風速に比例しており、風速 の増加と共に速度幅の値も増加する傾向がみられてい た。

これらの事例のように PIREP に報告のある LLWS の LIDAR による検出事例もある一方で, PIREP で LLWS の報告があっても LIDAR では何も LLWS を 検出していない事例もあった。現時点での PIREP で 報告のあった全 LLWS に対する LIDAR による検出 の割合は約50%となっており,同装置で観測を行って いる香港国際空港の LIWAS の検出率76%と比較す ると検出率の向上のための今後の調査・研究が必要と なっている。

5.まとめ

LIDAR を羽田空港および成田空港に設置し, LLWSの観測を開始した。現在,その観測結果を元 に検出された LLWS 情報は DRAW による検出結果

第7図 LIDARの観測範囲と観測例(a)成田空港,b)羽田空港).a)2008年4月12日0509(UTC)に成田 空港で観測されたPPIドップラー速度(左)と方位336°方向RHIドップラー速度(右)の例.淡色系 (+値)がライダーから遠ざかる成分を示し,濃色系(-値)がライダーに近づく成分を示す.左図中, 黒いラインがシアーラインを,数値がライン前後での風速差を示す.b)羽田空港で観測された通常時 のPPI速度幅(左)と,2007年9月6日09(UTC)の台風接近時の格納庫下流観測の速度幅の例.白 線枠は格納庫を示し,濃色は乱流が強いことを示す.

と一元化して航空局へ提供されており,民間航空会社 へも航空情報提供装置(MetAir)を通じて観測画像 の提供が行われている。

提供を行っている LIDAR で観測された風速データ は DRAW と比較して非常に精度が高いことがわかっ た.その観測範囲は、降水現象によるレーザー光の減 衰に伴う探知距離の変化以外にも、日変化や季節変化 及び周辺の環境によるエーロゾル濃度の変化に対応し て複雑に変動しており、これに伴い LLWS の検出で きる領域が変動していることが確認できた.また, LIDARにより観測されたデータはシアーラインや建 物による風の影響を捉えており,従来の風向風速計の みによる風の観測では不可能だったシアーライン位置 や乱流の発生場所の捕捉が可能となった.

この LIDAR を DRAW と組み合わせることによ り,降水時・非降水時に関係なく全天候において LLWS の監視ができるようになったことは航空機の 安全な運航に対して非常に大きな意義をもつ.しか し、一方ではまだそのデータの有効的な利用方法については改善の余地も大きく、今後も調査を行っていく 必要がある.

略語一覧

ACARS: Aircraft Communications Addressing and Reporting System DRAW: Doppler Radar for Airport Weather

DRAW : Doppier Radar for Airport Weath

LIDAR: LIght Detection And Ranging

 $\ensuremath{\text{LIWAS}}$: Lidar Wind shear Alerting System

LLWS: Low Level Wind Shear

PIREP: Pilot Report

PPI: Plan Position Indicator

RHI: Range Height Indicator

RVR: Runway Visual Range

参考文献

- 赤枝健治,2001:空港気象ドップラーレーダーによる測風 精度と低層ウィンドシアー検出性能.レーダー観測技術 資料,(49),11-12.
- 石原正仁,1997:運用を開始した空港気象ドップラーレー ダー(解説編). レーダー観測技術資料,(46),1-26.
- Shun, C. M. and P. W. Chan, 2008 : Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Ocean. Technol., 25, 637-655.
- 立平良三,鈴木 修,1994:単一ドップラーレーダーによる上層風推定の精度.天気,41,761-764.
- 東京航空地方気象台,2005:無降水時低層ウィンドシアー 出現特性の基礎調査(検討課題4).平成17年度レー ダー技術検討会/空港気象レーダー検討会資料(東京航 空地方気象台),11.
- 山本健太郎,2008:空港気象ドップラーライダーの後方散 乱から求めた MOR. 平成19年度東京管区調査研究会 誌,40.