数値予報資料から求めた竜巻に関連する

大気環境指数の統計的検証

飯 塚 義 浩*·加治屋 秋 実**

要 旨

竜巻の発生などに関連する大気環境指数を気象庁メソ客観解析資料の格子点値から求め,2006年から2009年の3 年間に日本国内で発生した竜巻141の事例を対象に,地域別・総観場別に分類して非発生事例との比較を行った. また,発生事例について,竜巻の種類及びFスケールとの関係も調べた.その結果,大気の安定度と風のシアー との合成指数に,発生事例と非発生事例それぞれにおける統計分布の差異が比較的明瞭にみられた.しかし,捕捉 率を75%とするしきい値を用いた竜巻の発生の有無や強さの予測において,現業で一般的に用いられてきた Energy-Helicity Index などの合成指数は,空振り率が高いという問題があった.一方,地表風速と渦管の引き延 ばしを考慮した合成指数は,Fスケールとの相関が比較的高いことが分かった.また,本研究では,下層の渦度と 収束を考慮した Vortex Convergence Index を提案した.この指数の水平分布における極大域は,他の指数に比べ て竜巻の発生地点と良く一致する場合があることが確認された.

1. はじめに

竜巻または竜巻を伴う対流雲の発生の指標となる風 の鉛直シアーや大気の安定度に関する指数について, 米国では多くの統計的研究による評価が行われてい る.なかでも, CAPE: Convective Available Potential Energy (Moncrieff and Miller 1976) と SRH: Storm Relative Helicity (Davies-Jones *et al.* 1990) との合成指数である EHI: Energy-Helicity Index (Davies 1993) は, スーパーセル竜巻の発生環境場を 最も良く表現するうちのひとつであるとされている (例えば, Rasmussen and Blanchard 1998).気象庁 は,これらの指数とレーダーエコーを組み合わせた突 風危険指数などをもとに, 突風災害の軽減を目的とし

*	札幌管	区気象台.				
	yosihi	ro.iiduka@me	et.kishou.go.jp			
* *	** 気象庁地震火山部火山課火山監視・情報センター					
	伊豆大	洛事務所.				
	akimi.kajiya@met.kishou.go.jp					
			-2009年7月27日受領-			
			-2010年10月6日受理-			
C	2011	日本気象学会				

て「竜巻注意情報」の発表を平成20年3月から開始した(瀧下 2009).しかし,米国に比べて日本では竜巻の発生数が少ないこと,発生環境に気候的な違いがあることから,EHIなどの有効性については検討を要する課題である.

これらの指数に関する公表された国内の統計的な研 究には、以下の報告がある。櫻井・川村(2008)は、 レーウィンゾンデ観測データなどにより、日本の竜巻 の発生環境場における指数の調査を行い、米国と比較 して CAPE の値が小さいため、CAPE を含む合成指 数の有効性は低いと報告した。そして、CAPE に替 えて KI (K-index;付録の式(A6))を用いた KHI: K-Helicity Index が、EHI に比べてシビアストーム の検出が良くなる可能性を示した。しかし、櫻井・川 村(2008)も述べているように、指数の予報業務への 利用における有効性について評価するためには、竜巻 の発生事例のみでなく、竜巻の非発生事例を含む多数 の事例を用いて比較する必要がある。

加藤(2008)は、気象庁領域客観解析資料(水平解 像度20 km,鉛直11層,6時間毎の出力)を用いた調 査により、CAPE・EHI・SRHには地域差と季節差 があるため、同じ指標と条件で竜巻の発生環境場を議 論することはできないと述べた。また、竜巻発生時に おける総観場は台風・低気圧・前線など多様であり、 総観場ごとに大気の安定度や風の鉛直シアーの大きさ とその範囲に相違があると考えられるので、総観場 別・地域別・季節別に指数の解析を行うのが適当であ る.

櫻井・向川(2009)は、総観場を台風に、地域を九 州の一部に限定して、気象庁メソ数値予報資料(水平 解像度10 km,鉛直16層、3時間毎の出力)から求め た竜巻発生時(4例)と非発生時(16例)の指数の比 較を行った。そして、強い竜巻発生時(2006年9月17 日延岡竜巻;Fスケール2)には大きなCAPEと SRHなどで環境場が特徴づけられ、EHI・SCP (Supercell Composite Parameter)・STP (Significant Tornado Parameter)などの合成指数によって、 延岡竜巻の環境場を他の弱い竜巻や竜巻非発生時と明 瞭に区別できることを示した。

一方,最近では KHI (櫻井・川村 2008) のほかに も竜巻に関連する新しい指数が考案されている.TV-Plfc: Tornado Velocity Parameter+Level of Free Convection (LFC) wind (Nakazato *et al.* 2009) は,既存の指数とは異なり,竜巻の最大接線風速を予 測するもので,Fスケールとの対応が良いとされてい る.

本研究では、それらの既存の指数に加えて、鉛直渦 度(以下、簡単に渦度と記す)と収束と対流有効位置 エネルギーの積で定義される新たな指数を提案する. これは、竜巻が温帯低気圧の暖域内や台風の圏内で発 生しやすいこと、竜巻を伴う対流雲が前線あるいは局 地的な収束線付近で発生しやすいことの経験則に基づ き、それらの環境条件を満たすときに大きな値をとる 指数として新たに考案したものである。本研究の目的 は、本研究で提案する指数Vortex Convergence Index (VCI)を含めた様々な指数について、各指数 の大きさと2006年から2009年の3年間に日本国内で発 生した竜巻141の事例との対応を調べることである。

各指数は、気象庁メソ客観解析資料の格子点値を用い て算出する。そして、地域別・総観場別に竜巻の発生 事例と非発生事例における指数ごとの統計分布の差 異、指数と竜巻の種類及びFスケールとの関係を検 証する。さらに、竜巻の発生地域の予測という観点か ら、複数の竜巻事例における各指数の分布における極 大域が竜巻発生地点にどの程度対応するか、その具体 的な位置関係についても調べる.

2. 調査方法

2.1 調査対象の指数と期間

調査対象の指数は、CAPE・EHI・KHI・SRH・ STPC (Significant Tornado Parameter with CIN, Thompson *et al.* 2005)・TVPlfc・VCI・VGP (Vorticity Generation Parameter, Rasmussen and Blanchard 1998) の8種類である (VCI 以外の各指数の具 体的な計算については付録, VCI については次節を 参照).調査対象期間は2006年2月~2009年2月の3 年間とした。竜巻等の突風データベース(気象庁 2009)から調査対象期間内の竜巻141個を抽出して, これを発生事例とし,発生事例以外の日を非発生事例 (2057事例)とする.

2.2 VCIの提案

本研究で独自に開発した指数 VCI を提案する. VCI は、LFC における渦度と水平収束及び対流有効 位置エネルギーの積として次式のように定義する.

 $VCI = Vor_{1fc} \times Conv_{1fc} \times mlCAPE \times C (s^{-2} J kg^{-1})$

ここで、Vor_{ifc}は LFC の渦度、Conv_{ifc}は同高度の収 束であり、Conv_{ifc}が負(発散)の場合には0として いる.LFCを用いたのは、いくつかの高度で計算を 行って比較したところ, 竜巻の発生地域やFスケー ルとの対応が最も良かったためである。mlCAPEは, 地上から高度500mまでの平均空気塊を持ち上げたと 仮定した対流有効位置エネルギーである。「Vor_{ifc}× Conv_{uc} | の項がストレッチングによる鉛直渦度の強 化を表し、「mlCAPE」の項が大気の不安定度、即ち ストレッチングの強度を表している.CはVCIの値 を規格化するための係数で、C=1.1×105とした。こ の係数により,本研究で対象とした竜巻の発生事例 (141例)における VCI の計算対象領域内の最大値 (141個)の中央値が1となるように調整している。 VCI は EHI の要素である SRH を渦度と収束の積に 置き換えたもので,既存の指数の多くが風の鉛直シ アーを構成要素としているのに対し, VCI は風の水 平シアーを取り入れている. これは,水平シアーに よって生成された鉛直渦が竜巻渦の起源とされている ノンスーパーセル 竜巻 (Wakimoto and Wilson 1989)の発生機構を念頭においたものである.

2.3 調查方法

検証を行う指数の値は,発生事例は竜巻の発生時刻

"天気" 58.1.

第1図 本研究で用いた竜巻に関連する大気環境 指数の計算領域。

に近い時刻の気象庁メソ客観解析資料の格子点値 (GPV:Grid Point Value,水平解像度10 km,鉛直 16層,3時間毎の出力)を用いて求め,発生地点を含 む格子点から40 km以内の格子点値の最大値とした. 竜巻発生時刻との差は最大1.5時間,発生位置との差 は最大約55 kmとなる.非発生事例は,00 UTCと12 UTCの気象庁メソ客観解析資料を用いて,日本全国 を概ね緯度5度ごとに4つの領域に区分(第1図)し て求めた陸上を含む格子点値のそれぞれの領域の最大 値とした.最大値とした理由は,指数の大きさが竜巻 の発生に関係しているからである.非発生事例の場合 には最大値が大気環境を表す代表値であるとは必ずし も言えないが,比較する値の整合性を考慮した.ま た,竜巻の発生などの予測をする際に空振り率のより 小さいしきい値を設定できると考えた.

検証の方法は,指数値の統計分布により,発生事例 と非発生事例との比較を4つの領域ごとに総観場別 (第1表)に行う.総観場は,気象庁天気図(アジア 域地上00・12 UTC)から気圧パターンを読み取っ て,[台風]・[低気圧と前線]・[その他]に分類した. 以上により,竜巻発生環境と非発生環境における指数 の値を統計的に評価する.

本研究では、米国海洋大気庁(NOAA: National Oceanic and Atmospheric Administration)の Storm Prediction CenterやRasmussen and Blan-

第1表 解析の対象領域と竜巻発生時の総観場別の一 覧.2006年2月から2009年2月までに日本で 確認された141個の竜巻を地域別,総観場別 に分類した.地域は第1図を参照,総観場は 台風と熱帯低気圧を[台風],低気圧と前線を [低気圧・前線],それ以外を[その他]とし た.

発生事例

地域/総観場	台風	低気圧・ 前線	その他	<u></u>
北日本	0	16	5	21
中日本	4	31	12	47
西日本	3	26	11	40
沖縄	1	16	16	33
計 	8	89	44	141

• 非発生事例

地域/気圧型	台風	低気圧• 前線	その他	≣†
北日本非発生	7	739	1311	2057
中日本非発生	33	937	1087	2057
西日本非発生	38	745	1274	2057
沖縄非発生	130	571	1356	2057
1 1 1	208	2992	5028	8228

chard (1998) で用いられている「箱ひげ図」によっ て指数値の統計分布を表す.指数の最小値から最大値 までを「ひげ」で,第1四分点値から第3四分点値ま でを「箱」で示す.「箱」の部分は25%値から75%値 までなので,全体の半数を占める.箱ひげ図は正規分 布を成していない統計データを比較する場合に便利で ある.

竜巻が発生するか否かの予測に関する指数の有効性 は,発生と非発生との統計分布の差異によって評価す ることができる.実際の予測では,統計分布の解析に よってしきい値を設定し,しきい値を超えた場合に竜 巻が発生すると予測する.したがって,しきい値を超 えても竜巻が発生しない場合(空振り)や,しきい値 を超えなくとも竜巻が発生する場合(見逃し)の割合 が小さいほど有効性が高い.

次に,発生事例を竜巻等の突風データベース(気象 庁 2009)により,竜巻の種類とFスケールで分類し (第2表),指数と竜巻の種類及び強さとの関係を調べ る.竜巻の種類は,スーパーセル竜巻とドップラー レーダーによりメソサイクロンやフックなどの回転的 特徴が観測された竜巻を[SC:19例],メソサイクロ ンや回転的特徴が観測されなかった竜巻を[NSC:25

第2表 本研究で対象とした全141事例の竜巻の種類 別およびFスケール別の事例数.F0,F1, F2・F3とFスケール不明(UNK)のそれ ぞれについて、レーダー観測の特徴からメソ サイクロンまたはフックあり(SC)、メソサ イクロン及びフックなし(NSC)、海上竜巻 (SEA)、陸上竜巻でドップラーレーダー観 測なし(UNK)に分類した.

F スケー ル/種類	F0	F1	F2 • F3	UNK	計
SC	8	6	3	2	19
NSC	11	9	0	5	25
SEA	3	6	1	72	82
UNK	7	6	0	2	15
計	29	27	4	81	141

例],ドップラーレーダーの観測資料がない陸上竜巻 を[UNK:15例],海上竜巻を[SEA:82例]とした. なお,SCにはスーパーセル竜巻の定義(時空間的に 連続して10⁻²s⁻¹以上の渦度を持つメソサイクロンが 存在すること;Donaldson 1970)を満たしていない ものも含まれている可能性がある.Fスケールは, [F0:29例]・[F1:27例]・[F2とF3:4例]の3つの 階級に区分し,不明の場合は[UNK:81例]とした. FスケールがF0未満と報告されている場合は[F0], F0-F1の場合は[F1]に分類した.

3. 指数の統計分布の特徴

3.1 指数の地域差

指数の出現頻度分布には、CAPE と EHI の南北差 が大きく、SRH の南北差が小さいなどの地域差があ ることが分かっている(加藤 2008).第2 図は、調査 対象期間(竜巻発生と非発生の合計2198事例)におけ る指数の比を求めて地域差を示したものである。各指 数の比は、各領域の中央値を4 領域の中央値の平均値 で割って規格化したものである。

地域差のパターンは3つのグループに分けることが できる.北日本が低いCAPE・EHI・VGP,沖縄が 低いKHI・SRH・TVPlfc,北日本と沖縄の両方が 低いSTPC・VCIである.グループによって地域差 の大きさに違いがあり,STPCのグループが最も大 きく,KHIのグループが最も小さい.南北差が顕著 なのはCAPEのグループである.一方,中部日本と 西日本とを比べると各指数の地域差に大きな差はな い.このように指数の地域差は、加藤(2008)が指摘 したように指数の種類によって様相が異なる.また,

中部日本と西日本とでは地域差が小さく,北日本と沖 縄では前者に比べて地域差が大きい。

3.2 竜巻の発生事例と非発生事例との比較

第3図は、竜巻の発生事例と非発生事例の指数の箱 ひげ図である。第3.1節で述べたように指数には地域 差があり、各領域の箱ひげ図を比較したところ、北日 本と沖縄で地域差が顕著であった。一方、中部日本と 西日本とでは、一部の指数を除いて地域差は比較的小 さかった。そこで、ここでは竜巻事例数が多い中部日 本を示した。

第3図各指数の第1四分点値から第3四分点値まで に注目すると,総観場によって値の範囲に差異があ り,SRHとVCIを除くと台風の場合には他に比べて 高い値になっている。また,全般に海上竜巻は小さい 値となっている。竜巻の発生と非発生との統計分布の 差異が最も明瞭なのは,総観場が[台風]の場合には STPC,[低気圧・前線]の場合にはVCIである。し かし,重なる部分も多い。

ここで、仮に発生事例の第1四分点値をしきい値に 設定する。櫻井・川村(2008)は目安として捕捉率が 80%となるしきい値を設定している。竜巻発生確度ナ ウキャスト(気象庁:平成22年5月27日開始)では、 捕捉率20~30%と60~70%の2通りで提供している。 竜巻のような頻度の低い現象では、捕捉率を上げる (見逃しを少なくする)と空振りが多くなる。本論文 では、櫻井・川村(2008)と気象庁を参考に75%とし た。このしきい値を超える非発生事例数(空振り) は、[台風]のSTPCが8、[低気圧・前線]のVCIが 169であり、空振り率はそれぞれ80%、96%と高く、 スレットスコアはそれぞれ0.18、0.04と低い。他の指 数の発生事例と非発生事例の統計分布は重なる部分が さらに多く、同様に第1四分点値をしきい値に設定す

第3図 気象庁メソ客観解析資料による中部日本領域の(a)CAPE (J kg⁻¹), (b)EHI, (c)KHI, (d)SRH (m² s⁻²), (e)STPC, (f)VCI, (g)VGP の箱ひげ図.記号 T は台風,L は低気圧・前線.

ると、空振りが多いためにスレットスコアもさらに低 くなる。他の領域の箱ひげ図を比較したところ、 EHI・STPC・VCI・VGPの合成指数に竜巻発生と非 発生との差異が明瞭な傾向がみられること、発生事例 の第1四分点値をしきい値に設定して竜巻の発生予測 をした場合に空振りが多いことの同様の結果を得た。 一例として、沖縄領域における[低気圧・前線]の合成 指数の箱ひげ図を第4図に示す。

3.3 竜巻の種類別の比較

第5図に全領域での竜巻の種類別の指数の箱ひげ図 を示す. CAPE と STPC を除く指数の[SC]の第1四 分点値・中央値・第3四分点値の全てが, [NSC]・ [SEA]よりも大きい.また, CAPE を除く指数は, [SC]>[NSC]>[SEA]の順に高い値が分布する傾向 がみられる.[SC]と[NSC]・[SEA]との比較におい て,第1四分点値から第3四分点値までの統計分布の 差異が比較的明瞭なのは, KHI と VCI である.ス レットスコアは,最も高いのが KHI で0.37である. 3.4 竜巻のFスケールによる階級別の比較

第6図は全領域での竜巻発生事例のFスケールに よる階級別の指数の箱ひげ図である。KHI・TVPlfc・ VCIの第1四分点値・中央値・第3四分点値の全て がFスケールに対応して大きい値となっている.仮 に[F2・3]の第1四分点値をしきい値に設定した場 合、「F0, F1]との識別において、空振り率が最も低 いのは VCI で83%である。ただし、VCI の値のばら つきは大きく, Fスケールとの相関係数は0.17にすぎ ない.相関関係が最も高い指数は TVPlfc で0.47であ る。TVPlfcは、本研究のFスケールが判明している 59事例の竜巻のうち49%がFスケールに定義される 風速の範囲内にあった(第7図).一方, Nakazato et al. (2009) は, 2001~2007年の竜巻のうち, 76% で TVPlfc によって F スケールが再現されたと述べ ている.本研究との差は、竜巻の事例数の違いと使用 した GPV データの差異によるもの, Nakazato et al. (2009) は竜巻の発生地点と TVPlfc の計算地点 数値予報資料から求めた竜巻に関連する大気環境指数の統計的検証

"天気" 58.1.

24

を厳密に対応させているが、本研究では発生地点周辺 の最大値を採用している、という調査方法の違いによ るものと考えられる。いずれにせよ、TVPlfcがFス ケールとの良い対応を示すことが確認された。ただ し、値のばらつきはKHI・TVPlfc・VCIのいずれも 大きく、あるしきい値を設定して竜巻の種類やFス ケールを識別しようとすると、竜巻の発生予測と同様

に空振り率が高いという問題が残っている.

第3表	各指数の t 検定での成績。(a)低気圧・	前紡
	事例における竜巻発生と非発生の P 値,	(b)
	SC と NSC・SEA の P 値.	

(a)		(b)	
低気圧·前線	P 値	SC	P 値
CAPE	0.953	CAPE	0.27922
SRH	0.163	SRH	0.00263
EHI	0.136	EHI	0.01969
VCI	0.051	VCI	0.08033
VGP	0.131	VGP	0.03066
KHI	0.608	KHI	0.00020
STPC	0.265	STPC	0.17647
TVPlfc	0.191	TVPlfc	0.00002
VGP KHI STPC TVPlfc	0.131 0.608 0.265 0.191	VGP KHI STPC TVPlfc	0.03066 0.00020 0.17647 0.00002

3.5 t 検定による比較

第3表はそれぞれ、中部日本における(a)[低気 圧・前線]の発生事例と非発生事例のt検定によるP 値(帰無仮説「発生と非発生の違いがない」を棄却す る確率)、(b)発生事例の[SC]と[NSC・SEA]のt検 定によるP値(帰無仮説「[SC]と[NSC・SEA]の違 いがない」を棄却する確率)である。有意水準を5% (P値が0.05以下)として(a)を見ると、有意差が認め

られる指数はVCIのみである。一方,(b)では CAPE・VCI・STPC には有意差を認められない。こ れは、VCI・STPC は分散が大きいため、CAPE は もともとの成績が悪いためである。発生事例のFス ケールの t 検定,「台風」の竜巻発生・非発生の t 検定 は、いずれも事例数が少ないために有意な結果は得ら れなかった.

4. 指数の水平分布の特徴

4.1 合成指数の水平分布の特徴

第3.1節で比較した発生事例の指数には、時空間的 な誤差が含まれている。また、指数の最大値が竜巻の 発生に対応することを仮定しているが、指数の時空間 的な最大値と竜巻の発生時刻及び発生地点が一致する という確証はない、そこで、指数の水平分布と竜巻の 発生地点との対応を調べるために、第8図に気象庁メ ソ客観解析資料から求めた VCI と EHI の水平分布を 示す。(a)と(b)は2007年6月10日1137 JST に千葉県 で発生したF0の竜巻,(c)と(d)は2008年11月19日 1145 IST ころに新潟県で発生した海上竜巻の事例で ある。これらの竜巻は、ドップラーレーダーで渦に伴 うドップラー速度パターンが確認されている. 図の時 刻と竜巻の発生時刻との差は30分以内である。

いずれも、VCI は局地的に大きい値が分布してお り、EHIに比べて竜巻の発生地域を限定的に表現し ている、本研究の141の竜巻のうち総観場が「台風」・ [低気圧・前線]の97事例について VCI と EHI・ KHI・STPC・VGP の水平分布を調べたところ、 竜巻 の発生地域を限定的に表現していたのは、VCIが24 例,その他は6~14例であった。なお、ここでの調査 方法は、指数の最大値のみではなく、局地的な大きい 値との対応にも注目し、竜巻の発生格子点から約40 kmの範囲内で竜巻の発生地域を水平分布図で特定で きるか否かを評価した.

> 4.2 数値予報資料によ る指数の水平分布 の事例

第4.1節では、VCIの竜 巻発生地域との対応が EHIに比較して良い事例 を示した.実際に竜巻の発 生地域を予測する場合は, 数値予報資料を用いる。本 節では,2006年9月17日に 台風第13号に伴って発生し た複数の竜巻の事例を対象 として,気象庁メソ数値予 報資料から求めた指数の水 平分布の特徴を述べる。竜 巻は,いずれも台風の北東 象限の九州地方太平洋側沿 岸部で発生した.発生地 点

・

F

スケール

・

発生時刻 は、① 宮崎県日南市 (F1) 1210 JST, ②宮崎県 日向市 (F1) 1330 JST, ③ 宮崎県延岡市 (F2) 1403 JST, ④大分県臼杵 市 (F2) 1505 JST であり, 台風の北上とともに発生地 点も北へ移動していた.

6

5

4

3

2

1

n

a)EHI b)VCI 1.4 1.2 1.0 0.8 0.6 0.4 0 0.2 0.0 d)VCI c)EHI 1.4 1.2 1.0 0.8 0.6 0.4

第8図 気象庁メソ客観解析資料によるEHI(a, c)・VCI(b, d)の水平分布 と竜巻の発生地点、上段は2007年6月10日12 IST,下段は2008年11月 19日12 JST. 図中の丸印は竜巻の発生地点で上段は2007年6月10日 1137 JST に千葉県で発生した F0の竜巻,下段は2008年11月19日1145 JST ころに新潟県で発生した海上竜巻.

0.2

0.0

第9図は, EHI・STPC・VCI・VGPの分布である. 上段((a)~(d))は2006年9月17日09JSTを初期時 刻とする3時間後の12JSTの予報値,下段((e) ~(h))は12JSTを初期時刻とする3時間後の15 JSTの予報である。これらは,第3.2節の竜巻の発生 と非発生との統計分布の差異が比較的明瞭であった指 数である。竜巻の発生地点には発生時刻順に番号を記 した。

EHIと VGP は、台風の北東象限の九州南部または 西部に大きい値が比較的広範囲に分布している。それ に対し、STPC と VCI は大きい値が局所的に分布し ている。指数の大きい値と竜巻の発生地点との対応 は、STPC と VGP には認められない。一方、EHI と VCI には認められる。特に、VCI は九州東部沿岸部 に局所的に大きい値が分布しており、竜巻発生地点と の対応もほぼ良い。

5. 考察

これまでの研究によれば,大気の安定度と風の鉛直 シアーとの合成指数が竜巻の発生環境場をよく表現し ていると考えられてきた (Rasmussen and Blanchard 1998; Thompson *et al.* 2003など).本研究では,地 域・じょう乱・竜巻の種類・Fスケールで分類して指 数の統計分布の比較を行ったが,TVPlfcを除く7種 類の指数は,竜巻の発生と強さの指標としては,空振 りが多いという点において有効なしきい値を得ること ができなかった.

ただし、ここでの有効性は統計的な有意性と空振り 率の高さで判断している。竜巻のような局地的な現象 では、適中率10%・空振り率90%程度でも情報として の価値があるとして、気象庁は竜巻注意情報を発表し ている。本研究の解析領域は日本を4つに区分したか なり広い範囲であり、じょう乱は台風を区別している ものの低気圧と前線は同じ分類とした。台風の場合に はある程度季節が限定されるが、季節別の分類は行わ なかった。竜巻の総観的な発生環境の多様性や加藤 (2008)が指摘した指数の地域差・季節差を考慮する と、本研究の解析結果は限定的であり、指数の有効性 を評価するためには、地域・季節・じょう乱の細分方 法が重要である。また、第3.3節において海上竜巻の

第9図 気象庁メソ数値予報資料による。EHI (a, e), STPC (b, f), VCI (c, g), VGP (d, h)の水平分 布と竜巻の発生地点の水平分布。上段は2006年9月17日09 JST を初期時刻とする3時間後の予報(12 JST),下段は同12 JST を初期時刻とする3時間後の予報(15 JST)。図中の丸数字は竜巻の発生地点 で①宮崎県日南市1210 JST,②宮崎県日向市1330 JST,③宮崎県延岡市1403 JST,④大分県臼杵市 1505 JST。矢印は950 hPa 高度における風ベクトル。

27

合成指数が低値な分布を示していたことから, 竜巻の 種類の分類も重要な要素のひとつになると考えられ る. なぜなら, これらの分類方法によっては評価結果 が変わり得る可能性があるためである.

一方, 合成指数の水平分布の特徴を調べた結果で は、EHI・STPC・VGP に比較して、VCI が 竜巻の 発生地域とよく対応する場合がみられた。VCIは、 竜巻を伴う対流雲が前線あるいは局地的な収束線付近 で発生しやすいことに着目し,既存の指数の多くが風 の鉛直シアーを構成要素としているのに対し、風の水 平シアーを取り入れている. これは、ノンスーパーセ ルの発生機構にも関連している。VCIの水平分布は 数十 km 規模の狭い範囲内により大きな値が集中化し やすい特徴がみられ、極大値が竜巻の発生地点と比較 的良い対応を示す場合がある。ただし、VCIの値は 数値予報モデルに大きく依存し, 同じ数値予報モデル でも渦度などの計算高度によって値が変わり得る。 VCI の構成要素の妥当性や計算方法の根拠などをこ こで示すには竜巻の事例数が少なく、今後の課題であ る. 竜巻の発生予測には数値予報モデルから計算した 指数を指標として利用することが可能であり、VCI のような指数を考案することには意義があると考え 3.

なお、本研究では、指数の計算に数値予報資料のみ を用いた。この利点は、ゾンデ観測よりも水平解像度 が高く時間間隔が短いので、時空間的に変動の大きい 竜巻の発生環境場を捕捉する可能性が高くなることで ある。しかし、指数の構成要素、例えば発散や渦度な どは数値予報モデルへの依存性が大きいので、各指数 の数値もモデルによって異なる。また、鉛直方向の解 像度は例えば850 hPa以下では7層であり、ゾンデ観 測資料と比べると低い。本研究の指数値を他の研究と 比較する場合には注意を要し、指数値を数値予報資料 とゾンデ観測資料とで比較するなどの調査が必要であ る.

6. まとめ

数値予報資料による竜巻発生予測の有効性を評価す るために、気象庁メソ数値予報資料を用いて、竜巻の 発生などに関連する大気環境指数8種類の統計的検証 を地域別・じょう乱別・種類別・Fスケール別に行 い、以下の結果を得た。

 大気の安定度と風のシアーとの合成指数: EHI・ STPC・VCI・VGP が、竜巻の発生と非発生との 統計分布の差異が比較的明瞭であった。しかし, 竜巻の捕捉率を75%に設定したしきい値を用いて 竜巻の発生予測を行った場合,空振り率が高いと いう問題があった。

- ② TVPlfc は他の指数に比べてFスケールとの相関 関係が高く、Fスケールの風速との対応が良いこ とが確認された。
- ③ VCI の水平分布は狭い範囲に大きな値を示す特徴 があり, EHI・STPC・VGP に比べて竜巻の発生 地域をより特定して表現できる場合があることが 分かった.

竜巻に関連する大気環境指数の検証には、地域・季 節・じょう乱・竜巻の種類などの細分方法、指数の計 算式と計算に用いる資料など多くの選択枝があり、そ れぞれで評価結果が異なる可能性があるため、検証方 法の検討も重要である.

謝 辞

匿名の2名の査読者の方には、問題点の的確な指摘 と多くの助言を頂きました。担当編集委員の海洋研究 開発機構茂木耕作氏は、温かい指導で受理まで導いて 下さいました。気象庁気象研究所主任研究官中里真久 氏には、TVPについて丁寧に教えて頂きました。本 研究の数値予報資料は、京都大学生存圏研究所の生存 研データベース(グローバル大気観測データ)を使用 しました。本研究は、東京管区気象台調査研究会での 成果が基礎になっており、当時の大島測候所及び東京 管区気象台技術部気候調査課の担当者にお世話になり ました。これらの方々に感謝します。

付 録

本研究で用いた各指標の具体的な算出方法を以下に 示す.なお,EHI・STPC については無次元として扱う.

CAPE : Convective Available Potential Energy (Moncrieff and Miller 1976)

$$CAPE = \int_{LFC}^{EL} g \frac{Tv'(z) - Tv(z)}{Tv'(z)} dz \quad (J \text{ kg}^{-1})$$
(A1)

本研究では地上〜高度500 m までの平均空気塊を持ち 上げたと仮定した.Tv(z),Tv'(z),gは,それぞ れ高度zにおける周囲の仮温度,空気塊が湿潤断熱

"天気" 58.1.

線に沿って上昇した場合の高度 *z* における仮温度, および重力加速度, *EL* は平衡高度である.

SRH: Storm Relative Helicity (Davies-Jones *et al.* 1990)

$$SRH = \int_{SFC}^{3km} ((V - C) \cdot \omega_h) dz \quad (m^2 s^{-2}) \qquad (A2)$$

ここで V = (u, v) は水平風ベクトル, $\omega_h = \left[-\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} \right]$ は鉛直シアーによる水平渦度ベクトルである. *C* はストームの移動速度で本研究では Bunkers *et al.* (2000) により,

$$C = (U_{mean}, V_{mean}) + \frac{D \cdot (V_{shear} - U_{shear})}{\sqrt{U_{shear}^2 + V_{shear}^2}} (\text{m s}^{-1})$$
(A3)

として求めた. Dは7.5 (m/s), (U_{mean} , V_{mean}) は 地上~高度 6 km の大気密度で重み付けされた風の平 均値, (U_{shear} , V_{shear}) は地上~高度 6 km での水平 風シアーである.

以降の指標の式中に用いられる CAPE および SRH は、それぞれ単位を J kg⁻¹、m² s⁻²として表示した数 値である.

EHI: Energy Helicity Index (Davies 1993)

$$EHI = \frac{mlCAPE \times SRH}{1.6 \times 10^5}$$
(A4)

ここで,mlCAPE は地上〜高度500 m までの平均空 気塊を使用して求めた CAPE である.

KHI:K-Helicity Index (櫻井・川村 2008)

$$\mathrm{KHI} = \frac{\mathrm{KI}^2 \times \sqrt{\mathrm{SRH}}}{8.1 \times 10^3} \ (\mathrm{K}^2 \ \mathrm{m \ s^{-1}}) \tag{A5}$$

ここで大気安定度を表す指標 KI は,

$$KI = (T_{850} - T_{500}) + TD_{850} - (T_{700} - TD_{700})$$
(K)
(A6)

である.

STPC : Significant Tornado Parameter with CIN (Thompson *et al.* 2005)

$$STPC = \left(\frac{mlCAPE}{1500}\right) \times \left(\frac{2000 - mlLCL}{1500}\right) \\ \times \left(\frac{ESRH}{150}\right) \times \left(\frac{EBWD}{20}\right) \times \left(\frac{mlCIN + 250}{200}\right)$$
(A7)

ここで、mlCAPE は、地上~高度1000 mまでの平均 空気塊を使用して求めた CAPE、mlCIN は、地上 ~高度1000 mまでの平均空気塊を使用して求めた CIN、mlLCL は、地上~高度1000 mまでの平均空気 塊を使用して求めた LCL 高度である。EBWD は、 地上から300 hPa 分の区間中の最も不安定な気塊の高 度の風と、その高度から EL までの高度の中間点の風 とのシアー、ESRH は、SRH の積分区間を Effective inflow layer に限定して求めた値 (m² s⁻²) であ る。Effective inflow layer は、地上から高度3000 m にかけ「CAPE100 J kg⁻¹以上かつ CIN-250 J kg⁻¹ 以上」を満たす区間として求められるものである。な お、本研究では第5項を米国の Storm Prediction Center で適用されている

$$\left(\frac{\text{mlCIN}+200}{150}\right) \tag{A8}$$

に置き換えて算出した.

TVPlfc (Nakazato et al. 2009)

$$\Gamma VPlfc = \eta \frac{|V_{LFC} - V_{SFC}|}{2} + |V_{LFC}| \quad (m \ s^{-1}) \quad (A9)$$

ここで V_{LFC} は、LFC 高度の風ベクトル、 V_{SFC} は、地上の風ベクトルである。渦管の引き延ばし率 η は、

$$\eta = \left[\frac{\rho_{EL}}{\rho_{LFC}} \frac{L_{adv}}{Z_{LFC}}\right]^{1/2} \tag{A10}$$

である. ここで, *pEL*, *pLFC*, *ZLFC*は, それぞれ EL 地 点の密度, LFC 地点の密度, LFC 地点の高度であ る. 渦管の引き伸ばし距離 *Ladv*は,

$$L_{adv} = \int_{LFC}^{EL} \sqrt{1 + \left| \frac{\partial u_h}{\partial z} \right| \left[\int_{z}^{EL} \frac{1}{w(z)} dz \right]} dz \quad (m)$$
(A11)

である. ここで u_h は,水平風ベクトル,w(z)は,高度 z における気塊の最大上昇流 $\sqrt{2 \times \text{CAPE}(z)}$ として求めたものである. *EL* は平衡高度である.

2011年1月

29

VGP: Vorticity Generation Parameter (Rasmussen and Wilhelmson 1983)

30

$$VGP = \overline{S} \times \sqrt{mlCAPE} \quad (m \ s^{-2}) \tag{A12}$$

ここで \overline{S} は、地上〜高度 4 km までの鉛直シアーの平均値である。

参考文献

- Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson and M. L. Weisman, 2000 : Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61-79.
- Davies, J. M., 1993 : Hourly helicity, instability, and EHI in forecasting supercell tornadoes. Preprints, 17 th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 107-111.
- Davies-Jones, R., D. Burgess and M. Foster, 1990 : Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588-592.
- Donaldson, R. J., 1970 : Vortex signature recognition by a Doppler radar. J. Appl. Meteor., 9, 661-670.
- 加藤輝之,2008: 竜巻発生の環境場に関する研究(I) ー竜巻をもたらす積乱雲の発生環境に関する統計的研究 ー. 田村幸雄編,平成19年度科学技術振興調整費 重要 政策課題への機動的対応の推進研究成果報告書,6-12.
- 気象庁,2009: 竜巻等の突風データベース (http:// www.data.jma.go.jp/obd/stats/data/bosai/tornado/ index.html,2009年7月1日現在)
- Moncrieff, M. and M. J. Miller, 1976 : The dynamics and simulation of tropical cumulonimbus and squall

lines. Quart. J. Roy. Meteor. Soc., 102, 373-394.

- Nakazato, M., O. Suzuki, K. Kusunoki, H. Yamauchi and H. Inoue, 2009 : Possible stretching mechanisms producing the tornado vortex in the mid-level. 13th Conf. on Mesoscale Processes, P1.7.
- Rasmussen, E. N. and D. O. Blanchard, 1998 : A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148-1164.
- Rasmussen, E. N. and R. B. Wilhelmson, 1983 : Relationships between storm characteristics and 1200 GMT hodographs, low-level shear, and stability. Preprints, 13th Conf. on Severe Local Storms, Amer. Meteor. Soc., J5–J8.
- 櫻井渓太,川村隆一,2008:日本における竜巻発生の環境 場と予測可能性.天気,55,7-11.
- 櫻井渓太,向川 均,2009:宮崎県で発生した台風に伴う 竜巻の発生環境場。京都大学防災研究所年報,52B, 403-412.
- 瀧下洋一,2009:突風に関する防災気象情報の改善一竜巻 注意情報の発表開始一,天気,56,167-175.
- Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore and P. Markowski, 2003 Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 1243–1261.
- Thompson, R. L., R. Edwards and C. M. Mead, 2005 : An update to the supercell composite and significant tornado parameters. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer, Meteor, Soc., P8.1.
- Wakimoto, R. M. and J. W. Wilson, 1989 : Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113-1140.

A Statistical Verification of Tornado Parameters Using Numerical Weather Prediction Data in Japan

Yoshihiro IIZUKA* and Akimi KAZIYA**

- * Sapporo District Meteorological Observatory, N2-W18, Chuou-ku, Sapporo, Japan.
- ** Izu-Oshima Resident Office for Volcanic Disaster Mitigation, Japan Meteorological Agency, 1–1– 14, Motomachi, Oshima, Tokyo, Japan.

(Received 27 July 2009; Accepted 6 October 2010)