レーダ雨量に基づく土砂災害の発生評価

一都市域を対象に、神奈川県の場合-

三隅良平*•真木雅之*•岩波 越*

1. はじめに

降雨は土砂災害を発生させる要因の1つであり,雨 量は土砂災害の発生可能性を評価する指標として広く 用いられている.これまで考案された最も簡単な雨量 による土砂災害発生指標の1つは実効雨量と呼ばれる もので,雨量を以下のように重み付き積算するもので ある(矢野 1990).

$$R_w = \sum_i 0.5^{i/T} R_i \tag{1}$$

ここで R_w が実効雨量で、土壌中の水分量を近似的に 表現する. R_i は *i* 時間前の雨量を表し、時間が経つ ほど係数0.5^{*i*/*T*}が小さくなることによって、流出や蒸 発散によって土壌から水が失われる影響を考慮してい る. *T* は半減期と呼ばれる定数で、*T*=1.5時間と *T*=72時間の実効雨量を組み合わせた危険度評価が広 く用いられている(寺田・中谷 2001など).一方、よ り精緻な手法としてタンクモデルを用いた危険度指標 があり(鈴木ほか 1979;牧原・平沢 1993)、土砂災 害警戒情報の基準の1つである「土壌雨量指数」の計 算にも用いられている(岡田 2002;立原 2006).

このような雨量による土砂災害の発生評価手法はリ アルタイム性が高く、広域に適用できる利点がある反 面、雨のみを入力情報として用いているため、実際の 土砂災害発生域よりも広い範囲を危険域として判定す ることになる.なぜならば、斜面崩壊が起こるかどう かは雨量のみならず、斜面の勾配や土層の厚さ、土の せん断強度等にも依存するからである.地形や土の強

* 防災科学技術研究所. -2010年11月9日受領--2011年5月12日受理-© 2011 日本気象学会 度の効果を取り込むため,流出解析と斜面安定解析を 組み合わせた斜面崩壊予測手法も考案されているが (沖村・市川 1985;水田・瀬尾 2001;三隅ほか 2004),土層の厚さや土のせん断強度に関するパラ メータを広域で得るのは難しく,適用範囲はごく限定 的となる.

広域にも適用可能で,かつ雨量以外の条件を組み込 んだ土砂災害危険度指標があれば、その実用性は高い と考えられる。土砂災害の発生と、降雨や地形・地質 に関するパラメータの統計的な関係を利用した土砂災 害発生予測モデルがこれまでにも作られているが (Gritzner et al. 2001;川越ほか 2008など), その多 くは自然斜面の崩壊を対象としており、都市域に発生 する土砂災害を対象としたものはほとんどない.都市 では軽微な斜面崩壊でも被害が生じやすく,災害予測 の観点からは被害を受ける人工構造物の存在も考慮す る必要がある。本研究では神奈川県を対象に、都市域 で発生する土砂災害の簡便な評価手法を提案する。具 体的には過去の災害履歴に基づき, レーダのメッシュ (以下,レーダ格子と呼ぶ)の中で土砂災害が発生す る確率を、雨量のみならず、格子内における人工構造 物の存在や、地形勾配を考慮して評価する手法を提案 する. このような気象レーダを用いた広域的な土砂災 害の発生確率評価は、広域に防災活動を行う担当者に 役に立つと考えられる.提案した評価手法をXバン ドマルチパラメータレーダによる観測事例に適用し, その効果を検証する。

2. 土砂災害発生確率の評価

本研究で発生評価の対象とするのは豪雨をきっかけ とした表層崩壊に伴う「土砂災害」である.斜面崩壊 であっても災害を起こさないものや,長期間の降雨浸 透が影響する深層崩壊,崩壊地点と被災箇所が離れて いる土石流等は対象としない。

1個のレーダ格子内に土砂災害が起こるかどうかを 決める因子として「雨量」「斜面の崩れやすさ」「人工 構造物の存在」の3つを考える.すなわち格子内の雨 量が一定値を超え,かつ崩れる斜面が存在し,加えて 人工構造物が斜面の近くに存在するとき,はじめて土 砂災害が発生すると考える(人工構造物が無くても人 間が斜面の近くにいれば土砂災害が起こり得るが,こ こではそのような場合を除外し,人工構造物が外力を 受ける都市域での土砂災害を対象にする).この考え に基づき,レーダ格子内で土砂災害が発生する確率 (P)を以下の式で表す.

$$P = P_{rain} f_{slp} \rho_{bld} \tag{2}$$

ここで P_{rain} は場所に依存しない雨量のみの関数で, $f_{stp} = \rho_{btd} = 1$ のときに土砂災害が起こる確率を表す. また f_{stp} はレーダ格子内において斜面の崩れ易さを表 す関数, ρ_{btd} はレーダ格子内に人工構造物が占める面 積の割合である.

式(2)の P_{rain} は $f_{stp} = \rho_{bld} = 1$ を満たすレーダ格 子から直接求めることが理想的であるが、そのような 格子を実際に検出することは難しい。そこでまず、対 象領域すべてのレーダ格子に対する、平均的な土砂災 害発生確率 P'_{rain} を考える。 P_{rain} を場所に依存しな い雨量のみの関数とするとき、 P'_{rain} は以下のように 表せる。

$$P'_{rain} = P_{rain} f_{slp} \rho_{bld} \tag{3}$$

式 (3) のバーは対象領域を平均した値を示している. P'_{rain} は半減期72時間実効雨量 (R_{72}) と半減期1.5時間実効雨量 $(R_{1.5})$ の 1 次関数で表されると仮定する.

$$P'_{rain} = \alpha R_{72} + \beta R_{1.5} + \gamma \tag{4}$$

 $R_{72} \ge R_{1.5} = R_{1.5} = R_{1.5} = R_{1.5} = R_{1.5} = R_{1.5} = R_{$

式(2)の*f_{sup}は、レーダ格子内における斜面の崩* れやすさを表す関数である。一般にレーダ格子のサイ ズは数百m以上であるのに対し、降雨で崩壊する斜 面のサイズは数m規模である。従ってレーダ格子内 で斜面が崩れるかどうかは、格子内に存在する斜面の 安定性とともに、斜面の数も影響する。 f_{stp} を正確に 求めるには、個々の斜面の安定性を調査する必要があ るが、広域においてそれを実行することは極めて困難 であるため、本研究では数値地図から得られる情報を 利用し、レーダ格子を平均した地形の勾配(θ)を用 いて f_{stp} を以下のようにパラメタライズする。

$$f_{slb} = \delta(\sin\theta)^{\varepsilon} \tag{5}$$

ここで δ と ϵ は定数である.式(5)では、レーダ格 子を平均した地形勾配が大きければ大きいほど,格子 内で斜面崩壊が起こりやすいと仮定されている。なお 関数形として sinθ を用いる理由は、土塊が斜面に 沿って滑ろうとする力(土塊に働く重力の斜面に沿う 成分) がθの正弦に比例するからである. 実際には レーダ格子を平均した勾配が同じでも、より細かい起 伏に富んだ地形もあればそうでない場合もあり、また 崩壊しやすい土砂を多く含むこともあればそうでない 場合もあるため、 f_{su} は sin θ に単純には比例しない。 その影響を指数εで調整する.後述するように, レーダ格子を平均した勾配が小さい時には明らかに土 砂災害が起こりにくい傾向があり、式(5)のような 簡単な式でも斜面崩壊の起こりやすさをある程度表現 できると考えられる。一方, レーダ格子内に人工構造 物が占める割合 ρ_{bld}は、国土数値情報等から直接求め ることができる.

以上,式(2)~(5)をまとめて,土砂災害発生確 率 *P*を以下のように表す.

$$P = \zeta \left(\alpha R_{72} + \beta R_{1.5} + \gamma \right) \left(\sin \theta \right)^{\varepsilon} \rho_{bld} \tag{6}$$

ただし $\zeta = \delta / (\overline{f_{slp} \rho_{bld}})$ である。

3. データ

3.1 解析範囲と格子

本研究の対象領域を神奈川県とする。神奈川県は 関東南部に位置しており,毎年何件かの土砂災害が 報告されている。神奈川県海老名市本郷(35°24'N, 139°23'E)には防災科学技術研究所のXバンドマル チパラメータレーダ(EBNレーダ)が設置されてお り(第1図a),2004年以降の暖候期には500mメッ シュ,5分間隔(2004年は1分間隔)でデータが取り 続けられている。本研究ではEBNレーダを中心とし た500m間隔の格子を危険度評価を行う単位とする。 3.2 土砂災害に関するデータ

神奈川県では,県内で発生した土砂災害を「災害報 告綴り」として紙媒体にとりまとめている。この資料 には,土砂災害の発生日時,場所,崩壊の状況,被害 の状況などが記録されている。1988年4月~2003年3 月までの資料を神奈川県から借用し,土砂災害発生箇 所の緯度経度を地図から読み取ってデータ化した。な お資料に記載されているのは市町村等を通じて神奈川 県に通報のあった「土砂災害」であって,県内で発生 した「斜面崩壊」がすべて記載されているわけではな い。資料に記載されている土砂災害には様々な規模の ものがあるが,本研究ではその規模にかかわりなく, 発生・非発生のみを解析対象とする。

3.3 雨量データ

実効雨量(R₇₂, R_{1.5})と土砂災害の発生を統計的 に調べるため,雨量データとして気象庁解析雨量を用 いる. このデータは1988年~2001年3月の期間は約5 km 格子, それ以降2003年3月までは約2.5 km 格子 で1時間間隔である。データをニアレストネイバー法 (最も近い座標の値を採用する内挿法) で EBN レー ダ格子に変換し、1988年4月~2003年3月の1時間間 隔の雨量データを作成した。また5章に示す2004年10 月20日の事例については、EBN レーダで観測された 雨量データを用いる。EBN レーダは偏波間位相差変 化率 (K_{DP}) とレーダ反射因子 (Z) を組み合わせて 降雨強度を計算する (Park et al. 2005). 仰角2.1° (ビームが地形の影響で届かない場所は仰角4.5°)の PPI スキャンから計算された1分間隔の降雨強度を, Cressman (1959) の重み関数を用いて加重平均して レーダ格子に内挿した。重み関数に用いる影響半径を 1000 m とした.

3.4 地形,土地利用に関するデータ

レーダ格子に人工構造物が占める割合 *p*_{bid}について は、国土数値情報「土地利用細分メッシュデータ」 (約100 m メッシュ) に基づき、建物用地が占める割 合(以後、「建物用地率」と呼ぶ)を用いて計算した。 また地形の勾配については、「数値地図 50 m メッシュ 標高データ」を用いて東西方向および南北方向の勾配 を計算し、その大きな方の値をレーダ格子内で平均し た。

4. 土砂災害発生の特徴

4.1 発生頻度の特徴

第1図bは1988年4月~2003年3月に神奈川県で

 R1図(a)等高線と神奈川県および横浜市の 位置,+はEBNレーダの位置を表す。
 (b)神奈川県の等高線(100m以下は20 m間隔,200m以上は200m間隔)および1988年4月~2002年3月における土砂 災害の発生箇所の分布(黒い点)。(c) 神奈川県における「建物用地率」の分 布。

発生した土砂災害の発生箇所を示している。この期間 に全部で1,315回の土砂災害が発生した。土砂災害の 発生回数には地域的な偏りがあり、都市が集中する東 部の丘陵地帯に多い。一方、西部には標高の高い山地 が存在するにもかかわらず、土砂災害の発生はあまり 多くない.第1図cに示す 建物用地率の分布と比較す ると,土砂災害の発生回数 が多い神奈川県東部では建 物用地率が高く,発生の少 ない西部では建物用地率が 低いことがわかる.ただし 標高の変化の少ない相模湾 に沿った平野部では,建物 用地率が高くても土砂災害 はほとんど発生していな い.

次に土砂災害の発生と, 実効雨量の関係を検討す る.各レーダ格子について 式(1)に基づき,気象庁 解析雨量から R_{72} および $R_{1.5}$ を計算した。厳密には 土砂災害が発生した時刻の 実効雨量を用いるべきであ るが,「災害報告綴り」に は土砂災害の発生時刻が記 録されていないデータがあ り,ここでは土砂災害発生 日の最大値のデータを用い

て検討する。神奈川県のレーダ格子の数(9,393個) と1988年4月1日~2003年3月31日の日数(5.478日) の積51,454,854個が全体のサンプル数となる。第2図 a, b に R_{72} および $R_{1.5}$ のヒストグラムを示す。いず れの場合も実効雨量が大きくなるほど,その頻度は減 じていく,一方土砂災害の発生回数は,実効雨量の値 が大きくなっても必ずしも減じない、このことは、実 効雨量が大きくなるほど土砂災害の発生率が大きく なっていくことを意味する。ヒストグラムの各階級に ついて、土砂災害の発生回数をデータ数で割った値を 第3図a, bに示す。R₇₂, R_{1.5}ともに実効雨量の増加 とともに値が増加していく. ただし R₇₂では 300mm 程度, R_{1.5}では 90mm 前後でほぼ値が一定となる. も う1つ注目すべきことは、第3図a、bの縦軸の値が 最大でも10-3のオーダーであることである。このこと は,大きな実効雨量が観測されても,土砂災害が発生 する格子の数は1000個の中の数個に過ぎないことを意 味している.

第2図c, dおよび第3図c, dはレーダ格子の建

(日最大値),(b) 半減期1.5時間実効雨量(日最大値),(c) 建物用地率,(d) 土地の勾配のヒストグラム。度数は格子数×日数であり,そのうち土砂災害が発生した場合を濃い色で示している。

物用地率および勾配について同様のヒストグラムを示 す.建物用地率は,値が0.1以下のとき土砂災害の発 生率が小さく,それより大きな値では階級値の増加と ともに発生率が緩やかに増加する傾向がある.レーダ 格子の勾配は,4°~6°の範囲で最も土砂災害の発生 頻度が大きく,勾配がそれより小さくても大きすぎて も発生頻度が小さくなる.ただしレーダの格子は500 mメッシュであるのに対し,実際に崩壊する斜面の 空間スケールは数m程度であり,ここで示す勾配は 実際に崩壊する斜面の勾配ではないことに注意を要す る.勾配が小さい格子はそもそも土砂災害を起こす斜 面が少なく,また勾配が急な斜面は一般に土層が薄い ことや(飯田・田中 1997),崩壊が起こったとしても 被害を受ける人工構造物が少ないことが要因と考えら れる.

4.2 土砂災害の発生確率

次に神奈川県の土砂災害について式(6)の係数 $\alpha \sim \varsigma$ を求める.最初に R_{72} を 50mm 間隔, $R_{1.5}$ を10 mm 間隔の階級に分け,それぞれの中央値を階級値と

 $\mathbf{24}$

レーダ雨量に基づく土砂災害の発生評価

にあった全格子数」で割る ことにより,土砂災害発生 確率 P'_{rain} を計算した。そ の結果から重回帰分析によ り式(4)の係数を求めたと ころ、 α =1.3×10⁻⁵、 β = 1.2×10⁻⁴、 γ =-4.4×10⁻³ が得られ,重相関係数0.57, 各係数は信頼度95%の水準 で有意であった。

次に ε と ζ の値を求め るため,式(6)を以下の ように変形する.

$$\frac{P}{P'_{rain}\rho_{bld}} = \zeta (\sin\theta)^{\varepsilon}$$
(7)

まず $\sin\theta$ を0.005間隔で階 級に区分し、各階級値にお ける土砂災害発生確率 Pを、その階級における P'_{rain} および ρ_{bld} の平均値

で割ることにより,式(7)の左辺の値を計算した. 次に sin θ の階級値と左辺との関係をプロットし,最 小2 乗法により係数 ς と指数 ε の値を求めた.得ら れた値は ς =25.0, ε =0.88となった.

以下の解析では、雨量のみによる土砂災害発生評価 式(4)と、本研究で提案された評価式(6)を比較し ながら議論を進める.ここで式(4)と式(6)の違い は次のように解釈される.例えば $P'_{rain} = 1 \times 10^{-3}$ と したとき、式(4)は以下のように変形される.

$$R_{1.5} = -0.11R_{72} + 45 \tag{8}$$

式 (8) は第4図のAのような直線として描かれ, $R_{1.5}$ がこの直線より上にあるとき $P'_{rain} > 1 \times 10^{-3}$ と なる. つまり式 (8) は一種の土砂災害発生危険基準 線 (CL ライン) と見なすことができる. 一方式 (6) は f_{slp} , ρ_{bld} の値によって縦軸の切片が可変となる. 例えば斜面勾配が小さく,建物用地がほとんど無い状 況を想定し, $P = 1 \times 10^{-3}$, $\theta = 2^{\circ}$, $\rho_{bld} = 0.1$ と置い たとき,式 (6) は第4図の直線Bのようになり,大 きな R_{72} や $R_{1.5}$ に対しても $P < 1 \times 10^{-3}$ である. 一方 $P = 1 \times 10^{-3}$, $\theta = 5^{\circ}$, $\rho_{bld} = 1.0$ とおくと式 (6) は 直線Cのようになり,比較的小さな R_{72} や $R_{1.5}$ に対し

*ρ_{bld}=*1.0のときを表す.

した。次に1988年4月~2003年3月における土砂災害 の発生履歴から、「ある R_{72} , $R_{1.5}$ の階級値の組み合わ せに対して土砂災害の起こった格子数」を「同一条件

2011年8月

第5図 2変数法と4変数法による,土砂災害発生格子の捕捉率に対する適中率の変化.(a) 1988年4月~ 2003年3月の神奈川県のデータに適用した場合,(b) 2004年10月20日の横浜市の事例に適用した場合.

て $P > 1 \times 10^{-3}$ となる. すなわち式(6) はレーダ格 子の勾配および建物用地率に応じて,別々のCL ライ ンを設定することを意味する.

以下,式(4)を「2変数法」,式(6)を「4変数 法|と呼び,それぞれの式によりどの程度土砂災害発 生の評価ができるかを検討する. ここで検証には、予 測の空振りの少なさの指標である適中率(=適中格子 数÷予測格子数),および見逃しの少なさの指標であ る捕捉率(=適中格子数÷全発生格子数)の2つを用 いる.具体的には、2変数法、4変数法において、そ れぞれに土砂災害発生確率を変えて、同じ数の土砂災 害を捕捉できるよう危険水準を設定した場合の適中率 (空振りの少なさ)を比較する。捕捉率は土砂災害発 生確率により変化するため,様々な捕捉率について適 中率を比較して精度を検証する。第5図aは係数を 求めるのに用いたデータ(1988年4月~2003年3月) で検証した結果である。捕捉率をどのように設定して も、4変数法の方が2変数法よりも適中率が高い。例 えば捕捉率60%のとき、2変数法、4変数法の適中率 はそれぞれ0.18%, 0.69%である.

5. マルチパラメータレーダを用いた発生評価

次に2変数法,4変数法による土砂災害発生確率 を,EBN レーダによる雨量を用いて検証する.2004 年10月19日から20日にかけて台風23号が関東地方を通 過し、神奈川県に大量の雨をもたらした。第6図は横 浜地方気象台で観測された1時間雨量および実効雨量 の変動を示している。降雨は10月19日10:00に始ま

り,20日19:00には1時間雨量が26 mm に達した. 同じ時刻に $R_{1.5}$ の最大値49.1 mm が記録されている. 一方 R_{72} は20日23:00に最大値185 mm に達した.こ の台風の通過によって神奈川県内に多くの土砂災害が 発生したが,県内すべての発生箇所を同定するのは困 難であったため、検証エリアを横浜市内に限定し、 「横浜市の災害」(横浜市2005)から土砂災害発生箇 所を同定した.この雨で発生した横浜市内の土砂災害 発生件数は72件であり、レーダ格子での個数は69個で ある.なお横浜市はレーダサイトから約20 km 離れ ているが、X バンドマルチパラメータレーダを用い た雨量推定は、レーダサイトからの距離が30 km 以 内であれば現業で用いられているCバンドレーダよ りも精度が高いことが知られており(高堀ほか 2009)、充分に利用可能である.

第7図 2004年10月20日の横浜市における(a)レーダ格子の勾配(陰影)と半 減期72時間実効雨量の最大値(等値線),(b)建物用地率(陰影)と半 減期1.5時間実効雨量の最大値(等値線),(c)2変数法に基づく土砂災 害発生確率(1×10⁻³以上を濃い陰影で示す)と実際に発生した格子 (黒塗り),(d)4変数法に基づく土砂災害発生確率と実際に発生した 格子(陰影,黒塗りは(c)と同様).

第7図a, bはEBN レーダで観測された実効雨量 の最大値の分布を示している. R_{72} , $R_{1.5}$ とも横浜市 西部で大きな値を示している.第7図c, dはそれぞ れ2変数法,4変数法を用いたときの土砂災害発生確 率の最大値の分布を示している.2変数法では実効雨 量の値が大きい横浜市西部で土砂災害発生確率が大き くなっている。ところが土砂災害は必ずしも実効雨量 の値が大きな場所に起こっておらず,むしろ横浜市東 部に多く発生している。4変数法では,発生確率の大 きな場所が,建物用地率の大きな横浜市東部にも広が り,土砂災害発生箇所をうまく捕捉している。第5図 bに示すように,どのように捕捉率を設定しても4変 数法の方が2変数法よりも適中率が大きくなる。

雨量に基づく土砂災害危険度指標には様々なものが あり,第7図cに示したものとは異なる結果が得られ ることもあり得るが,雨量のみを指標として用いてい る限りにおいては,仮にどのような手法を用いても, 大きな雨量の観測された場 所でより危険度が大きくと らざるを得ないと考えられ る.本事例のように実効雨 量の大きな場所以外に土砂 災害が発生するような事例 では、4変数法の方が適中 率は高いと考えられる。

6.まとめ

本研究では都市域におけ る土砂災害の発生確率をリ アルタイムで評価する簡便 な式を提案した.提案され た式にはパラメータとして 半減期72時間実効雨量,半 減期1.5時間実効雨量,人 工構造物の存在,および レーダ格子の勾配が考慮さ れている。神奈川県の15年 間の土砂災害発生履歴に基 づいて係数を決め,2004年 台風23号の事例で検証を 行ったところ,実効雨量の みに基づく方法よりも適中 率が上昇する結果が得られ た。このような統計的な土

砂災害発生評価は、物理的な危険度評価が困難な都市 域において特に有効であるとともに、広域の防災活動 を行う担当者がリアルタイムで土砂災害危険域の分布 を知る上で有益であると考えられる.

謝 辞

神奈川県県土整備部の方々には,災害報告綴りを閲 覧,コピーさせていただいた。また日本気象協会の石 井琢哉氏には,神奈川県の土砂災害データの整理に協 力していただいた。匿名の査読者からは適切なコメン トをいただき,論文の内容を向上させることができ た.以上記して感謝いたします.

参考文献

Cressman, G. P., 1959 : An operational objective analysis system. Mon. Wea. Rev., 87, 367-374.

Gritzner, M. L., W. A. Marcus, R. Aspinall and S. G.

Custer, 2001 : Assessing landslide potential using GIS, soil wetness modeling and topographic attribute, Payette River, Idaho. Geomorphology, **37**, 149–165.

- 飯田智之,田中耕平,1997:簡易貫入試験からみた土層深 と地形の関係.地形,18,61-78.
- 川越清樹,風間 聡,沢本正樹,2008:数値地理情報と降 雨極値データを利用した土砂災害発生確率モデルの構 築.自然災害科学,27,69-83.
- 牧原康隆, 平沢正信, 1993: 斜面崩壊危険度予測における タンクモデルの精度.研究時報, 45, 35-70.
- 三隅良平,小口 高,真木雅之,岩波 越,2004:分布型 流出モデルを用いた表層崩壊危険域のリアルタイム予 測.自然災害科学,23,415-432.
- 水田敏彦,瀬尾和大,2001:数値標高モデルに基づく豪雨 による斜面崩壊危険度予測一長崎市を事例対象として 一.自然災害科学,19,477-491.
- 岡田憲治, 2002:土壤雨量指数. 測候時報, 69, 67-100.
- 沖村 孝,市川龍平,1985:数値地形モデルを用いた表層 崩壊危険度の予測法.土木学会論文集,(358),69-75.

- Park, S. G., M. Maki, K. Iwanami, V. N. Bringi and V. Chandrasekar, 2005 : Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II : Evaluation and application. J. Atmos. Oceanic. Technol., 22, 1633–1655.
- 鈴木雅一,福嶌義宏,武居有恒,小橋澄治,1979:土砂災 害発生の危険雨量.新砂防,**31**(3),1-7.
- 立原秀一,2006:土砂災害警戒情報の発表開始について. 天気,53,43-45.
- 高堀 章,前坂 剛,三隅良平,2009:Xバンドマルチ パラメータレーダによる降雨量推定一複数仰角 PPI データを用いた改善効果について一.防災科学技術研究 所研究報告,(73),41-47.
- 寺田秀樹,中谷洋明,2001:土砂災害警戒避難基準雨量の 設定手法.国土技術政策総合研究所資料,(5),1-58.
- 矢野勝太郎,1990:前期降雨の改良による土石流の警戒・ 避難基準雨量設定手法の研究.新砂防,43(4),3-13.
- 横浜市総務局危機管理対策室,2005:平成16年横浜市の災 害,107pp.

Evaluation of Landslide-Disaster Occurrence in Urban Areas Based on Radar-Derived Rainfall —Case Study in Kanagawa Prefecture—

Ryohei MISUMI*, Masayuki MAKI** and Koyuru IWANAMI**

- * (Corresponding author) National Research Institute for Earth Science and Disaster Prevention, Tsukuba 305-0006, Japan.
- ** National Research Institute for Earth Science and Disater Prevention.

(Received 9 November 2010; Accepted 12 May 2011)

704