306 (気候モデル;地球温暖化)

3. 気候モデルの出力をどう使うか?

楠 昌 司*

1. はじめに

地球温暖化の影響評価研究には、気候モデルによる 気候変動の予測情報が入力として必要である.しか し、気候モデルの出力の意味や性質を正しく理解して いないと、誤った解析を行ったり、意味のない結果を 導いたりする可能性があるので、充分注意が必要であ る.本講演では、気候モデルの出力を利用する立場に 立って、気候モデルの出力の使い方について解説す る.水文分野に特化した利用上の注意については、沖 ほか(2008)に優れた解説がある.

2. 地球温暖化予測の意味

地球温暖化予測は、天気予報と違う. 第1図は、大

気の予測可能性の概念図である.数日から1週間を対 象とする短期天気予報は、大気の初期条件を与えて大 気の時間変化を予測する. この原理による予測可能性 (第1種の予測可能性) は約2週間である (Lorenz 1963). それより長い時間スケールの1か月予報や季 節予報では、海面水温などの外的強制力の時間変化に 伴う予測可能性(第2種の予測可能性)を頼りにして いる (Lorenz 1975). 季節予報では、海面水温の変 化を大気海洋結合モデルで予測する必要がある. さら に、数十年から数百年といった長い時間スケールを対 象とする地球温暖化予測では、二酸化炭素、オゾン、 エアロゾルなどの濃度変化が効いてくる.地球温暖化 予測では、一般に大気海洋結合モデルを用いる. さら に、炭素循環や化学過程の効果を考慮する場合は、地 球システムモデルを用いる。第1表に予報とその原理 についてまとめた.

温暖化予測では日々の天気を予報するのではない.

^{*} 気象研究所気候研究部.

skusunok@mri-jma.go.jp

^{© 2012} 日本気象学会

第1図 大気の予測可能性に対する初期値と外的 強制力の重要度の時間スケール依存性.

第1表 対象とする時間スケールが異なる各種予 測の基本原理.

予測種別	予測時間	モデル	原理
天気予報	日~週	大気	初期値に対する 時間発展
中期予報 季節予報	月~季節	大気,大気海 洋結合	初期値と外的強 制力
地球温暖化	数十年~ 数百年	大気海洋結合 地球システム	外的強制力に対 する応答

モデルでは2091年元旦のつくばの天気を計算してはい るが,特定年,特定日,特定地点の情報に意味はな い. 2091~2100年の10年平均したつくばの元旦の気温 と1991~2000年の10年平均したつくばの元旦の気温と の差には,意味がある.温暖化予測では,時空間的な 平均を施した統計量が意味を持つ.

第2図は大気モデルの降水量の例である. 観測で は、低気圧ないし台風に関連して6月中旬,7月中 旬,8月上旬に顕著な降水現象があるが、モデルでは 再現されない.現実の低気圧や台風がやって来ないと 嘆いてはいけない.観測された海面水温を与えている が、大気の直近の初期条件を与えていないので日々の 降水現象は原理的に再現できない.

3. モデルの地形

第3図が示すように、モデルの地形は現実の地形と 異なる.モデルの水平分解能が低いと高い山が表現で きないだけなく、現実の海が陸になってしまう (141°E付近は海).内陸の観測点は盆地や谷間にある ことが多い.第3図を見ると、137.8°E、138.5°E付 近は盆地になっているが、20kmモデルでは現実より

第2図 降水重の日時糸列. 関東地方をはば含む 領域で平均. ●付き太実線は, GPCP 1 DD (Huffman *et al.* 2001) による観測 値. 細線は気象研究所20km 全球大気モ デル. 実際に観測された海面水温を与え た現在気候再現実験(名称 SP0A)の結 果. 1997年6月1日~8月31日.

標高が高く,180km モデルは低い.モデルの気温の 検証を行う場合は,現実の標高とモデルの標高の違い を考慮したモデルの気温補正が必要である.特に,山 岳地域ではモデルの標高は現実より低いため,現実の 積雪地域では本来雪として降っているのに,モデルで は雪が融けてしまい雨として降っている可能性があ る.利根川や最上川などの流量は上流の積雪が重要で ある.気候モデルの降水や積雪を河川モデルの入力と する場合,モデル高度の補正を行い,改めて降水の雨 雪判別が必要であろう. 688

4. 空間代表性

水平の格子間隔が20kmのモデルが、20kmの水平 スケールの現象を表現出来るわけではない.格子モデ ルで表現できる最も短い波動現象の波長は格子2個分 の長さである(第4図a).この場合、3つの格子が 必要である.2次元平面の1点のみで雨が降っている 現象を検知するには、最低5個の格子点が必要である (第4図b).このようにモデルが表現できる最小の空 間スケールは格子間隔の数倍になる.モデルの検証を 行う場合は、モデルの1格子点ではなく、ある程度の 空間平均について検討して欲しい.

第5図は利根川上流域の降水量データの検証例であ る.4格子平均による時系列の相関係数は、1格子の みによる相関係数に比べ、高くなっている.この解析 を5×5=25格子まで拡張し、日本全国に適用する と、格子数が多いほど精度が向上する(Kim Sunmin 氏,私信).

5. 時間分解能

モデル出力の時間間隔は,用途によって異なる.気 象研20km 全球大気モデルの場合では,極端な降水現 象の評価用に,降水量は1時間間隔で保存している. 台風や温帯低気圧の解析用には,動きの追跡に必要な データを6時間間隔で保存している.日時系列として は,降水量,地上気温の他に,日最大1時間降水量, 最高・最低地上気温,最大地上風速などを保存してい る.モデルの出力には,物理量によって,瞬間値,平 均値,積算値と異なった統計量となっていることがあ るので,注意が必要である.また,気象分野の特殊な 単位を使っている場合もあるので,単位の変換にも注 意が必要である.

気象研究所では、影響評価研究グループとの密接な 連携の下に、どのような物理量を、どのような時間間

第5図 利根川流域の降水量検証.(a)気象研究 所20km 全球大気モデルの格子系.四角 は対象領域. 点線が1格子.実線が4格 子.○は格子の位置.(b)5日積算降水 量(mm)の時系列. 横軸は半旬番号. 薄い実線がアメダスの観測値. 1979~2003年の25年平均.濃い実線がモ デル(第2図と同じ実験SP0A). Kim Sunminと中北英一氏(京都大学防災研 究所)提供.

隔で、どのような格子間隔で、どのような領域につい て保存すべきか討論し、出力データを決めている.影 響評価研究に使うモデルの入力に該当するデータが、 気候モデルで出せない場合は、代替策を考えなければ ならない.

台風による強風災害の研究では最大瞬間風速が重要

"天気" 59. 8.

である.気候モデルの風は瞬間値であるが,現実の突 風などは再現されない.丸山ほか(2008)は,2004年 に北九州に上陸した台風の事例について,20km 全球 大気モデルにネストした1km 格子の領域モデルの10 秒間間隔(時間積分のタイムステップ)の風データを 観測値と比べた.1km 格子のモデルでもやはり突風 などは再現されず,10~15分平均の観測値と同程度の 時間変動を示す.影響評価を研究する分野では,極端 な現象は災害に直結するので重要である.しかし,気 候モデルによる極端な現象の再現性は,影響評価研究 者を満足させる水準には達していないようである.

6. モデルの誤差

モデルには様々な誤差がある.現在気候の再現実験 で日々の降水量が原理的に再現されない(第2図), 地形が現実と異なる(第3図),平均領域が狭いと誤 差が大きい(第5図)など様々な原因がある.第6図 は,吉野川流域の降水量の例である.地域平均および 年間降水量という時間・空間平均操作を行ったにも関 わらず,個々の年の降水量の再現性はあまり良くな い.これは,本質的に日々の降水量が原理的に再現さ れないことと同じである.この実験では観測された各 年の海面水温をモデルに与えているが,気象現象の 年々変動の再現性は難しい.とくに,降水現象は難し い.しかし,5年間の平均で比べると,誤差が減って いる.

モデルには誤差が必ずある.影響評価研究に際して は,誤差の補正が必要な場合が多い.誤差の補正法 は,研究目的によって異なる.

7. 不確実性の評価

地球温暖化予測で必ず問われるのが,予測の信頼 性,不確実性である.不確実性の原因には,次のよう なものがある.

- (1)気候系の自然変動:たとえ大気中の二酸化炭素濃度が一定であっても、大気や海洋には独自の年々変動、数十年変動がある。
- (2) モデルの誤差:モデルの格子間隔と鉛直層を無限 に細かくできないこと,時間刻みを無限に小さく できないこと,モデルの物理過程の計算方式が不 完全であること,モデルに入っていない物理過程 があることなどに起因する.
- (3) 温室効果ガスの排出シナリオ:排出量の多少に よって気候変動の大きさが変わる。

- 第6図 吉野川流域の降水量検証.(a)領域の定義.黒点はモデルの20km 格子の位置.
 (b)年降水量の比較.観測はアメダス.気象研20km全球大気モデル実験SP0A.各年と5年平均.各年の誤差は観測値に対して-8~+50%.5年平均は+8%.猪股広典氏(独立行政法人土木研究所水災害・リスクマネジメント国際センター)提供.
- (4)近未来予測の海洋初期値:大気海洋結合モデルで 近未来の将来予測を行う場合,海洋の初期条件に 敏感である。

予測の不確実性を評価するには,実験設定を微妙に 変えたアンサンブル実験と呼ばれる複数の実験でばら つきを見積もる.(1)では,大気あるいは大気と海洋 の初期値を変えた実験を行う.(2)ではモデルの特性 が異なる複数のモデルで実験を行う.(3)では,複数 のシナリオ実験を行う.(4)では,複数の海洋初期値 で実験を行う.

第7図は気象研究所の大気モデルによるアンサンブ

689

第7図 日本付近 (125°~142°E, 25°~42°E) で 平均した7月の降水量.縦点線より左側 が現在気候. 点線より右側が将来予測実 験(2075-2099年)で、排出シナリオは 中庸のA1B. 現在気候の左側が観測値 で、●は GPCP (緯度経度2.5度格子、 1979-2003年; Adler et al. 2003), は GPCP 1DD (1.0度, 1997-2008年; Huffman et al. 2001), △は CMAP (2.5度, 1979-2003年; Xie and Arkin 1997), +は TRMM 3B43 (0.25度, 1998-2008年: Huffman et al. 2007). 現在気候の右側がモデル実験で、×が気 象研究所60km 格子全球大気モデルによ る実験(1979-2003年)で、大気初期値 が異なる3つの実験を行った. ○は3つ の60km モデル実験の平均. ◇は20km 格子全球大気モデルによる現在実験 (1979-2003年)と将来予測実験(2075-2099年). 60km モデルによる将来予測 実験は、海面水温の違いによる不確実性 を評価するために、第3期大気海洋結合 モデル相互比較実験(CMIP3)の結合 モデル平均の海面水温、豪州の結合モデ ルCSIRO-MK3.0の海面水温,東京大 学グループの結合モデル MIRO-C3.2 (hires) の海面水温, 気象研究所 の結合モデル MRI-CGCM2.3.2の海面 水温を与えた4種の実験を行った.それ ぞれの海面水温で大気初期値が異なる3 つの実験を行った.将来実験の横線は 60km モデルによる12個全ての実験の平 均. 楠 ほか(2008) と Kusunoki et (2011)を改変. al.

ル実験の例である.気象研究所20km 全球大気モデル は地球シミュレータで実行可能であるが,計算機資源 の制約からアンサンブル実験は行えない.水平解像度 を60km に落とした大気モデルを用い,複数の海面水 温予測値と複数の大気初期値の組合せを与えたアンサ ンブル実験を行った.日本の7月の降水量は,20km モデルも60km モデルも増加しており,変化予測の傾 向が一致している.

第7図で示された60km モデルによるばらつきの情報を,何らかの形で20km モデルの結果に付加できないだろうか? 一つの方法としては,モデルの年々変動の大きさでスケーリングするやり方がある.一般に,水平スケールが小さいモデルの方が,年々変動は大きい.よって,20km モデルと60km の年々変動の比によって,60km モデルによるばらつきを20km モデルのばらつきに変換することが可能である.このような操作は,領域平均値でも行えるし,格子点ごとにも可能である.

影響評価研究に60km モデルのアンサンブル実験の 結果をどう使ったらよいのであろうか? 20km モデ ルと60km モデルの現在気候の再現性は異なる. 梅雨 や極端な降水現象の再現性は, 20km モデルの方が 60km モデルより優れている. モデルの現在気候の再 現特性の違いを考慮し, 60km モデルのアンサンブル 実験のばらつき情報を何らかの方法で20km モデルに 付加しなければならない. その方法は,影響評価研究 において,どのような評価モデルを使い,どのような 気象要素を入力とするかで,戦略が異なるであろう.

参考文献

- Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin and E. Nelkin, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-present). J. Hydrometeor., 4, 1147-1167.
- Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36-50.
- Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55.
- 楠 昌司,水田 亮,松枝未遠,2008:60km格子全球大

気モデルのアンサンブル実験による梅雨の変化. 日本気 象学会2008年度秋季大会講演予稿集, (94), A105.

- Kusunoki, S., R. Mizuta and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Clim. Dyn., **37**, 2481-2493.
- Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
- Lorenz, E. N., 1975: Climatic predictability. In the Physical Basis of Climate and Climate Modelling, GARP Publication Series, (16), WMO, 132-136.
- 丸山 敬,前田潤滋,友清衣利子,中野満寿男,金田幸 恵,2008:メソスケール気象モデルにより再現された台 風0418号の強風場.風工学シンポジウム論文集,20,

37-42.

- 沖 大幹,木本昌秀,鬼頭昭雄,高橋 潔,風間 聡, 2008:「気候変動将来推計情報の水文分野での利用促進 シンポジウム」資料集.http://hydro.iis.u-tokyo.ac.jp/ cc2008ws/ (2011.4.3閲覧).
- USGS (The United States Geological Survey), 1996: GTOPO30. http://eros.usgs.gov/#/Find_Data/ Products_and_Data_Available/gtopo30_info (2011.4.3閲覧).
- Xie, P. and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.