バングラデシュで2013年3月22日に発生した

竜巻の被害と発生環境場

村田文絵*1・S. M. Quamrul Hassan*2・Md. Abdul Mannan*3・ 山根 悠介*4・林泰一*5

要 旨

バングラデシュ東部で2013年3月22日に発生した EF-2レベルの竜巻は死者36名の被害をもたらした。迅速に行われた被害調査の結果を示し、環境場の調査から発生原因を考察する。

1. はじめに

バングラデシュを含むインド亜大陸北東部では, モンスーン季の前のプレモンスーンと呼ばれる3~ 5月に,シビアストームが多く発生する(例えば Ramaswamy 1956; Weston 1972; Karmakar and Alam 2006; Prasad 2006; Yamane *et al.* 2010). これ らは現地語でこの季節の災いを意味するカルバイシャ キ,またストームが北西の方角から来ることから nor'wester と呼ばれる.その中には竜巻をもたらす ものがあり,これまでバングラデシュでは1989年5月 26日に約1300名,1996年5月13日に約700名,2004年 4月14日に約100名の死者を出している.米国ほど発 生頻度は高くないものの,いったん発生すると甚大な 被害をもたらす.

本研究では、バングラデシュにおいて2013年3月22 日夕方に発生した竜巻について、被害調査の結果を記 述し、竜巻発生時の気象状況について調査した。過去 にバングラデシュで被害調査が行われたのは1996年5

*1(連絡責	任著者)高	高知大学教	育研究部自然	然科学	系理学
部門。f	umie@ko	chi-u.ac.jp)		
*² バングラ	デシュ気	象局.			
*3 南アジア	*地域協力	連合気象研	「究センター		
*4 常葉大学	教育学部。				
*5 京都大学	防災研究	所.			
			—2013年9	月9日	受領一
				月8日	受理一
© 2014 E	日本気象学	会			

月13日の竜巻が初めてと思われる(桂 1996; Schmidlin and Ono 1996; 林ほか 1997; Yamane *et al.* 2013 a). しかし政情不安もあって,調査隊が現地に入る ことができたのは発生から1ヵ月以上経過してからで あった.一方,今回の竜巻はバングラデシュにおいて カメラ付携帯電話が普及して初めて生じた強い竜巻で あり,また発生時刻が日没前であったため,複数の目 撃者によって動画撮影が行われ,テレビやインター ネット上で公開された.また,バングラデシュ気象局 (以下 BMD)の職員及び,南アジア地域協力連合気 象研究センターの研究者が,それぞれ翌日と1週間後 という早い時期に被害調査を行った.このように今回 の竜巻は,これまでになく迅速に被害調査が行われ, 気象資料も過去に比べて多く入手できた.

2. 被害調査

竜巻が発生した場所はバングラデシュ東部の Brahmanbaria 県にあり、インド国境に近い地域である (第1図). Ministry of Disaster Management and Relief 管轄下の Disaster Management Information Centre が発行した現況レポートによると、被害は死 者36名、負傷者388名、全壊家屋2635棟、半壊家屋752 棟に及んだ。

被害調査は発生日の翌日と1週間後に共著者が実施 した。発生日の翌日に被害状況の把握を行い,1週間 後に被害の分布の把握と住民への聞取り調査を行っ た。聞取り調査による竜巻発生時刻は1050~1110

第1図 バングラデシュにおける竜巻発生場所(左図の A)と被害跡(右図の 太線).右図のBは被害を受けた刑務所(第2図a)の位置,Cは第2 図 cの写真撮影位置をそれぞれ示す.被害跡の点線部分は顕著な被害が 確認できなかったことを表す.Googleマップを使用した.

第2図 竜巻によって生じた被害を示す.(a) 刑務所の2重の外壁の倒壊,
(b) 全壊家屋が多い村の様子,(c) Brahmanbaria-Akaura 道路の街路樹の被害,(d) 木々に巻きついた飛散物.

UTC (現地標準時は UTC+6時間であり,現地時間 の1650~1710) である。竜巻の寿命は5~7分,回転 方向は反時計回りであった。雷や降雹の報告はなかっ た。

被害跡は長さ約10km,幅100~150mの線状で

建てられた家々にはまた,多くトタン板が使われていた. Ono and Schmidlin (2011) はバングラデシュにおける竜巻シェルターの導入を検討している.

米国の改良藤田スケール(EF-scale, McDonald and Mehta 2006, 付録参照)を用いて竜巻の強さを見

あった。第2図に主な被害 状況を示す. 公共建物への 顕著な被害として刑務所の 2重の外壁の破壊があった (第2図a),鉄筋の入った 高さ×厚さが5 m×75 cm の壁が,内側の壁が幅25m, 外側の壁が幅8mにわたっ て竜巻によって壊された。 被害地域は田園地帯であ り,15の村が被害を受け た。全壊した住家は主にト タンの波板や植物を編んで つくった壁、レンガを積み 上げてコンクリートで固め た壁(一部は鉄筋が入って いる) 等で構成されていた (第2図b).また樹木が多 数ねじ切られ,またあるも のは根ごと引き抜かれてい た(第2図c). 飛散物の 樹木や建築物への突き刺さ りは確認されなかった。

目撃情報として, コンク リートの屋根が300m飛ば された,池の水が1mほ ど吸い上げられた, 家畜が 5~100 m 飛ばされたなど があった。また竜巻発生時 には多くのトタン板や木々 が空を舞い、あるものは樹 木に絡まっている様子が被 害跡にしばしばみられた (第2図d). 過去の被害調 查(桂 1996; Schmidlin and Ono 1996) はこれら が多くの人命を奪う凶器と なったことを指摘してい る.しかし被害後に新たに

積った。被害地域は、EFscale の被害指標 (DI) の カテゴリー1 (SBO) に相 当する農家の納屋のように 弱い建造物が多くを占め. 全壊家屋が多数みられたこ とから 被害の 程度 (DOD) はレベル8であり、3秒平 均の風速で90~130 mph (40~60 m/s) 以上であっ たと推定される。樹木の被 害 (DIのカテゴリー27及 び28) において、ねじ切ら れたり,引き抜かれたりし ている木があることから, DOD はレベル3 或いは4 である. こちらについても 3 秒平均で90~130 mph 程 度の風速であったと推定さ れる. これらのことから竜 巻の強さを EF-2と判断し た.

本事例では目撃者によっ て撮影されインターネット

上に公開された竜巻の動画が複数あった(例えば http://www.youtube.com/watch?v=nm-13jNTN3s, http://www.voutube.com/watch?v=ac74GNYS bg0, 2014.1.14閲覧)。それらの竜巻の映像からはメ ソサイクロンがあることを示唆する親雲の回転や強い 竜巻にしばしばみられる多重渦構造は確認されなかっ た、投稿者と連絡が取れなかったため、画像の撮影場 所は不明であり、詳細な画像解析には至らなかった。

3. 発生環境場

2014年3月

解析に用いたデータは BMD による気象レーダー, 地上気象観測データの実況通報 (SYNOP)、米国 NCEP/NOAAの客観解析データ NCEP global tropospheric final analyses (NCEP_FNL), 86.5E にある中国の静止気象衛星 FY-2D の可視画像であ る。NCEP FNLの時間分解能は6時間,水平解像度 は1°である。FY-2Dの時間分解能は1時間,可視画 像の水平解像度は0.01°である。

第3図に竜巻発生時付近の1100 UTC の気象レー ダー画像,第4図に1031 UTCの衛星可視画像を示

231 22.5N 第4図 1031UTCの衛星可視画像(91.2E,23.9N)

す. 複数の積乱雲が北東-南西の帯状域にわたって数

26

25.5N

25N

24.5N

24N

23.5N

File View 🚦 🕂 🖍 🖓 🖫 🔗 🕺 🚳 🔍 Hode User COX/COX 440KR 1KH 11:00:07 22 MAR 2013

第5図(a) 00 UTC と(b) 12 UTC の SYNOP. コンターは海面気圧(hPa) である.地点毎に雲量,気温(°C),露点温度(°C),風向風速(長い羽根は10ノット.1ノット=0.51 m/s),天気を表す.太線はドライラインの推定位置を示す.

 第6図 2013年3月22日12 UTCのNCEP_FNL データの(91E, 24N)における熱力学
図とホドグラフ.図中1 mb=1 hPa, knots, kt はノットを表わす.

囲外であった。またこの時刻より前のレーダー観測は 2時間前,この時刻より後の観測は15分後であり,親 雲のメソスケール構造とその変化は解析できなかっ た.

プレモンスーン季の降水システムは、インド・ジャ ルカンド州の高原(Chotta Nagpur plateau)付近, 或いはヒマラヤ山脈の南縁で発生して、東或いは南東 に移動する弧状や線状のスコールライン型の降水シス テムがよくみられる(Mukhopadhyay *et al.* 2005, 2009; Ghosh *et al.* 2008; Rafiuddin *et al.* 2010; Dalal *et al.* 2012).一方 Islam and Uyeda (2007)は、バ ングラデシュ東部は相対的に湿っており、乾燥したバ ングラデシュの西で発達した対流雲と比べて特徴が異 なり、対流雲の背が低く降水強度が弱いことを示して いる.本事例の竜巻の親雲は移動してきた降水システ ムではなく、竜巻発生位置付近で発達した積乱雲で あった.

第5図にSYNOPによる00 UTCと12 UTCにおけ る地上気象場の分布を示す.露点温度をみると,バン グラデシュの南東部はベンガル湾から南風が流入して 相対的に高く湿っている一方で,西の内陸部は低く乾 燥している.気温は朝方(00 UTC)湿った南東部に 対して乾いた西部において相対的に低い一方で,日中 (12 UTC)においては逆に乾いた西部が高い.推定 される湿潤空気と乾燥空気の境界(ドライライン)を 太線で示す.ドライラインを境として最大5℃程度

154

第7図 NCEP_FNL による2013年3月22日12 UTC における (a) 500 hPa のジオポテンシャル高度 (m)と風 (m/s) 及び (b) 地表付近の空気塊を持ち上げた CAPE (J/kg) と925 hPa の風 (m/s).

露点温度に差がみられる。第3図と比較すると,積乱 雲の発生位置はドライラインにほぼ沿っていた。

米国では、暖候期にメキシコ湾からの湿った海洋性 の気流と、大平原からの乾いた大陸性の気流の間にし ばしばドライラインが形成され、その境界に沿って対 流が発達し、しばしばシビアストームに発達する (Fujita 1958; Rhea 1966; Schaefer 1986; Ziegler and Rasmussen 1998). バングラデシュ周辺では Weston (1972) がドライラインの存在とシビアストームとの 関係を議論しており、最近インド気象局の予報官のた めに導入された予測ツールとしてドライラインの検出 機能が取り入れられている(Lefort 2013). ドライラ インに沿った露点温度差は米国の事例と比べて大きく ないが、米国における詳細な観測では、湿度差の大き さと対流の発生には関係がないとされる(Wakimoto and Murphey 2010).

第6図に NCEP_FNL データを用いた発生位置付 近 (91E, 24N) における熱力学図 (Skew-T diagram) とホドグラフ,主要な熱力学/力学パラメータ の値を示す.風は1km以下で南西風,それより上は 北西風へと変化しており,下層に鉛直シアーがある. 地上付近は気温が高く相対的に湿潤だが,上層は気温 が低く600 hPaより上が非常に乾燥した潜在不安定な 大気であり CAPE も大きい.このような環境場の特 徴はバングラデシュのプレモンスーン季に特有の気候 学的特徴である (Yamane and Hayashi 2006).一方 ストームに相対的なヘリシティ (SReH) は小さく スーパーセルの発達に好ましい環境場とは言えない.

第7図aに12UTCのNCEP_FNLによる500hPa のジオポテンシャル高度と風を示す.バングラデシュ 上空には顕著なトラフが発達しており,強化しながら 東に移動していた.このトラフは300hPaにおいても 顕著であり(図略),対流圏中層から上層にかけて存 在していた.このような環境場はRamaswamy (1956)においてシビアストーム発生時にみられる特 徴的な型の一つとされている.またYamane *et al.* (2013b)も、シビアストーム発生時の平均場は非発 生時に比べて550hPaのトラフが深まることを示して いる.

第7図bは12UTCにおける地表空気を持ち上げた 場合のCAPEと925hPaの風を示す.ベンガル湾の 西岸に沿って非常にCAPEが大きい状況にある一方 で、インド北部からバングラデシュ西部にかけてヒマ ラヤの南に沿って北西風が卓越しており、バングラデ シュにはその境界が位置する.CAPEがベンガル湾 の西岸に沿って大きい特徴はプレモンスーン季の気候 学的特徴である(Yamane and Hayashi 2006; Bhowmik *et al.* 2008).

4. 考察

今回の竜巻がスーパーセル竜巻かどうかを直接判定 できるレーダー資料はなかった。しかし被害調査及び 環境場の調査において,親雲がスーパーセルであるこ とを示唆する資料はなかった。ノンスーパーセル竜巻 から EF-2スケールの被害が生じることもある(Wakimoto and Wilson 1989). バングラデシュのプレモ ンスーン季の特徴は、地上付近は南風がベンガル湾か ら流入し高温湿潤である一方で、上層は非常に乾燥し た西風が吹いており、下層の鉛直シアーと CAPE が 共に大きい,シビアストームの発生に適した環境場に ある. さらにこの日の環境場の特徴として、地上にド ライライン,中上層の偏西風中には深いトラフが解析 された、ドライライン付近の収束によって生じた上昇 流がトラフによって強化され、強い積乱雲が発達しや すい条件がそろっていたといえる.一方,米国のドラ イライン付近の境界層内には小スケールの鉛直渦がし ばしば観測されている (Marquis et al. 2007; Buban et al. 2012). 従って、そのような鉛直渦の積乱雲の 上昇流による引き延ばし (Wakimoto and Wilson 1989) によって竜巻が発生したと考えられる.

5. まとめ

バングラデシュにおいて2013年3月22日夕方に発生 した竜巻は死者36名,負傷者388名の被害をもたらし た.被害調査による被害の程度はEF-2と判断され る.高度1km以下に湿った南風がベンガル湾から流 入する一方,上空は冷たく非常に乾燥した西風が吹く この時期特有の環境場の中で,偏西風中の深いトラフ がバングラデシュ上空を通過していた.また地上気象 場はバングラデシュ中西部と南東部の間にドライライ ンの存在を示唆した.竜巻の親雲はドライラインに 沿って発達した複数の積乱雲の1つであった.

多数の死者をもたらした原因として、日本や米国と 比べて住居の強度が弱いこと、また強風で飛散しやす い凶器となりうる建材が多く使われていることが挙げ られる。バングラデシュにおいてはこの時期毎年シビ アストームが発生している。いったん強いシビアス トームが生じると被害が大きいため、シビアストーム の発生予測・警報発令に関して、また教育や避難など 様々な視点から対策が行われる必要がある。

謝 辞

中国の静止気象衛星 FY-2D のデータは千葉大学環 境リモートセンシング研究センターより入手しまし た.熱力学図はフロリダ州立大学の Bob Hart 氏が作 成したプログラムを用いて作成しました.論文作成に あたり名古屋大学の上田 博氏,高知大学の佐々浩司 氏,編集委員の柳瀬 亘氏,査読者の方より有益な助 言を頂きました。本研究は高橋産業経済研究財団から の助成を受けて行いました。ここに謝意を表します。

参考文献

- Bhowmik, S. K. R., S. S. Roy, and P. K. Kundu, 2008: Analysis of large-scale conditions associated with convection over the Indian monsoon region. Int. J. Climatol., 28, 797-821.
- Buban, M. S., C. L. Ziegler, E. R. Mansell and Y. P. Richardson, 2012: Simulation of dryline misovortex dynamics and cumulus formation. Mon. Wea. Rev., 140, 3525-3551.
- Dalal, S., D. Lohar, S. Sarkar, I. Sadhukhan and G. C. Debnath, 2012: Organization modes of squall-type mesoscale convective systems during premonsoon season over eastern India. Atmos. Res., 106, 120-138.
- Fujita, T. T., 1958: Structure and movement of a dry front. Bull. Amer. Meteor. Soc., 39, 574–582.
- Ghosh, A., D. Lohar and J. Das, 2008: Initiation of Nor' wester in relation to mid-upper and low-level water vapor patterns on METEOSAT-5 images. Atmos. Res., 87, 116-135.
- 林 泰一,桂 順治, M. Salehin, M. F. Qayyum, 1997: 1996年5月13日,バングラデシュ,タンガイル県で発生 した竜巻.日本風工学会誌,(71),9-10.
- Islam, M. N. and H. Uyeda, 2007: Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens. Environ., 108, 264-276.
- Karmakar, S. and M. Alam, 2006: Instability of the troposphere associated with thunderstorms /nor' westers over Bangladesh during the pre-monsoon season. Mausam, 57, 629-638.
- 桂 順治, 1996: バングラデシュの'96竜巻災害調査記.日 本風工学会誌, (69), 23-32.
- Lefort, T., 2013: Dry-line, nor'westers and tornadic storms over east India and Bangladesh: An operational perspective through synergie, the new IMD forecaster's workstation. Mausam, 64, 517-530.
- Marquis, J. N., Y. P. Richardson and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 1749– 1768.
- McDonald, J. and K. Mehta, 2006: A Recommendation for an Enhanced Fujita Scale (EF-scale). Wind Science and Engineering Center, Texas Tech University, 111pp.
- Mukhopadhyay, P., H. A. K. Singh and S. S. Singh, 2005: Two severe nor'westers in April 2003 over Kolkata,

India, using Doppler radar observations and satellite imagery. Weather, **60**, 343-353.

- Mukhopadhyay, P., M. Makahur and H. A. K. Singh, 2009: The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata. Part I: Doppler radar and satellite observations. J. Earth Syst. Sci., 118, 441-466.
- Ono, Y. and T. W. Schmidlin, 2011: Design and adoption of household tornado shelters for Bangladesh. Nat. Hazards, 56, 321-330.
- Prasad, K., 2006: Environmental and Synoptic Conditions Associated with Nor'westers and Tornadoes in Bangladesh —An Appraisal Based on Numerical Weather Prediction (NWP) Guidance Products. 14th report of SAARC Meteorological Research Center, 89 pp.
- Rafiuddin, M., H. Uyeda and M. N. Islam, 2010: Characteristics of monsoon precipitation systems in and around Bangladesh. Int. J. Climatol., 30, 1042-1055.
- Ramaswamy, C., 1956: On the sub-tropical jet stream and its role in the development of large-scale convection. Tellus, 8, 26-60.
- Rhea, J. O., 1966: A study of thunderstorm formation along drylines. J. Appl. Meteor., 5, 58–63.
- Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting. P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.
- Schmidlin, T. W. and Y. Ono, 1996: Tornadoes in the districts of Jamalpur and Tangail in Bangladesh. Quick response report 90. Natural Hazards Center, Boulder, CO., USA. http://www.colorado.edu/ hazards/research/qr/qr90.html (2013.9.6 閲覧).
- Yamane, Y. and T. Hayashi, 2006: Evaluation of environmental conditions for the formation of severe local storms across the Indian subcontinent. Geophys. Res. Lett., 33, L17806, doi:10.1029/2006GL026823.
- Yamane, Y., T. Hayashi, A. M. Dewan and F. Akter, 2010: Severe local convective storms in Bangladesh:

Part II. Environmental conditions. Atmos. Res., 95, 407-418.

- Yamane, Y., M. Kiguchi, T. Hayashi, A. M. Dewan and T. Terao, 2013a: Characteristics of damages of severe local storms based on field surveys in Bangladesh. J. Disaster Res., 8, 1052–1060.
- Yamane, Y., T. Hayashi, M. Kiguchi, F. Akter and A. M. Dewan, 2013b: Synoptic situations of severe local convective storms during the pre-monsoon season in Bangladesh. Int. J. Climatol., 33, 725-734.
- Wakimoto, R. M. and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113–1140.
- Wakimoto, R. M. and H. V. Murphey, 2010: Analysis of convergence boundaries observed during IHOP_2002. Mon. Wea. Rev., 138, 2737-2760.
- Weston, K. J., 1972: The dry-line of Northern India and its role in cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 98, 519-531.
- Ziegler, C. L. and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: forecasting issues from a case study perspective. Wea. Forecasting, 13, 1106–1131.

付 録

改良藤田スケール (Enhanced Fujita scale) はデ キサス工科大学において開発された藤田スケールの改 良版であり,2007年より米国の竜巻の強さを表す等級 として用いられている.これまでの藤田スケールには 被害の指標が少ない,建造物の質が考慮されていな い,被害と風速の明確な相関が示されていないという 欠点があった。EF-scale では28の被害指標 (DI) が 設定され,各 DI には被害の程度 (DOD) 毎にその被 害をもたらす風速の範囲が示されている.ただしバン グラデシュに適用する際,類似した建造物でも材質や 造りが違う,また樹木の種類が異なることにより,被 Bangladesh Tornado on 22 March 2013 —Its Damage and the Atmospheric Condition—

Fumie MURATA^{*1}, S. M. Quamrul HASSAN^{*2}, Md. Abdul MANNAN^{*3}, Yusuke YAMANE^{*4}, and Taiichi HAYASHI^{*5}

- *1 (Corresponding author) Faculty of Science, Kochi University, 2-5-1 Akebonocho, Kochi 780-8520, Japan.
- *2 Bangladesh Meteorological Department.
- $^{\ast 3}$ SAARC Meteorological Research Center.
- *4 Faculty of Education, Tokoha University.
- *5 Disaster Prevention Research Institute, Kyoto University.

(Received 9 September 2013; Accepted 8 January 2014)