2012年9月24日に三浦半島で発生した大雨における

レーダーエコーの振舞

青 木 弘 徳*1·池 田 倫 子*2·渡 邊 匡 央*3

1. はじめに

2012年9月24日,横須賀市にある神奈川県雨量観測 所の宝金山(第1図参照)で23時までの1時間に88 mm(速報値)の猛烈な雨を観測するなど,三浦半島 を中心に局地的な大雨となった。この猛烈な雨の影響 で,京浜急行本線では線路近くの斜面が崩壊し,線路 に土砂が堆積したため,追浜駅・京急田浦駅間で列車 脱線事故が発生した。この他にも横須賀市や逗子市で 土砂災害が発生した。

猛烈な雨となった地域は海に近く,地上や高層の観 測データが少ないため,大雨の要因に関する解釈が難 しい.レーダー画像に着目したところ,大雨をもたら したものを含め,3つの降水域があり,狭い範囲に存 在しているにも関わらず大きく異なる動きをしてい た.そこで,それらの降水域の動きの違いに着目して 解析を行った.

2. 気象状況

第2図に2012年9月24日21時の地上天気図を示す. 日本の東の低気圧から日本の南に前線が伸びている. 同時刻の500 hPa 高層天気図(図略)では、九州付近 にトラフがあり、関東地方はその前面にあたる。日本 の南の前線に対応する傾圧帯が本州南岸にあり、その 北側に位置する館野の500 hPa の気温は平年より3℃ 程度低く、-12℃であった。一方、関東地方の南の海 上では、海面水温が27℃程度であり、暖かく湿った空

*1(連絡責任著者) Hironori AOKI,東京管区気象台 気象防災部.aoki_sagittarius@met.kishou.go.jp

- *2 Michiko IKEDA, 東京管区気象台気象防災部.
- *³ Masahiro WATANABE, 東京管区気象台気象防災 部.
- © 2014 日本気象学会

第1図 関東地方及び三浦半島付近の地図.な お、この背景地図等データは、国土地理 院の電子国土 Web システムから提供さ れたものである.

第2図 2012年9月24日21時の地上天気図。

気が下層の東南東風により三浦半島付近に流入する状況であった.

第3図は21時の館野の温位エマグラムである.下層 から400 hPa 付近にある安定層まで飽和相当温位がほ ぼ一定になっていた.下層の相当温位は約330 K であ るが,もし下層に335 K を超えるような暖かく湿った 空気が流入すると,400 hPa まで対流雲が成長する可 能性がある成層状態であった.

第4図に21時00分から23時30分まで30分毎に解析雨

エマグラム.太実線が温位,細実線が露 点温度から求めた温位,破線は相当温 位,点線は飽和相当温位,短矢羽は5 m/s,長矢羽は10 m/sの風速を表す.

量を時系列に並べた図を示す.23時00分の図に注目す ると、1時間80mm(最大95mm)を超える猛烈な雨 が横須賀市付近で解析されている。この降水域(以 下,降水域A)は21時から神奈川県東部をゆっくり 南下していた。降水域Aの北西側には、埼玉県から 南に移動する降水域(以下,降水域B)がある。降水 域Bにおける降水は1時間30mm程度で降水域Aに 比べて弱かった。22時30分頃には、降水域Aの北側 に北東に広がる降水域(以下,降水域C,第4図の白 破線で囲った領域)が新たに発生した。この降水域C が通過した横浜地方気象台では23時までの1時間に51 mmの非常に激しい雨を観測した。

第4図 21時00分から23時30分までの解析雨量分 布の時系列.図中のA, B, Cは降水域 を表し、降水域Aと区別するために、 降水域Cを白破線で囲んでいる。

Date: 2012/09/24

す.

30

3つの降水域の動きをみ ると、降水域Aはゆっく り南下している一方で、降 水域Bは速く南下した。 また、降水域Cは降水域 Aの北側で発生して北上 した。このように3つの降 水域は数+km程度の範囲 に存在しているにも関わら ず大きく異なる動きをし た。

3. レーダーエコーの動 き

3つの降水域の動きをさ らに詳しく解析する.第5 図に20時30分から23時00分 までの15分毎のレーダーエ コー時系列図を示す.図上 の矢印で強エコー域の動き を示した.

降水域Aの強エコー域 は約10 km/hでゆっくり 南下していた.また,22時 00分の時点で,降水強度40 mm/h以上の強エコー域 の南北幅は約6 kmあっ た.このため,同じところ で降水が長時間続き,三浦 半島で猛烈な雨となったと 考えられる.

降水域 B は詳細にみる と,第5図のように降水域 B1と B2からなっていた。 降水域 B2は降水域 B1から 20 km 程度離れた領域で発 生しているので,その発生 に降水域 B1からの冷気外 出流の影響は考えられな い。このことは地表付近の 風や温度から確かめられる (第6図参照)。よって,も う少し大きなスケールの影 響で降水域 B2の 発生が

第6図 19時から22時までのアメダス風・海面高度補正した気温(0.65°C/ 100 m)及びレーダーエコーの分布図.数字は気温,短矢羽は1 m/s,長矢羽は2m/s,旗矢羽は10 m/s,実線(赤)は等温線,二 重線は収束線,一点鎖線は等温線の尾根軸,矢印は流線を表す.20 時の収束線Iについては、アメダス風で収束が不明瞭なことから、 毎時大気解析を参考に破線で示す.

第7図 18時から24時までの熊谷におけるウィンドプロファイラー観測結果。

あったと考えられる.これらの降水域の南下速度は, 降水域 A の強エコー域よりも速く,約20 km/h で あった.降水域 B1では,21時00分のように,冷気外 出流の南下に伴い,積乱雲の進行方向である南側に新 たな強エコー域が発生し,速い移動速度で南下した. 降水域 B2でも,21時30分に掛けて,南側に新たな強 エコー域が発生し,バックビルディング形成による線 状の積乱雲群の形成が見られる.しかし,強エコー域 の通過する速さが速く,ある領域での強エコー域の持 続時間は降水域 A に比べて短かった.

降水域Cは南下する降水域Aの北側を北東に広が るという形で、21時45分頃から明瞭になった。なお、 第4図の解析雨量分布は1時間降水量なので、降水域 Cが明確になるのは前述のように22時30分頃になる。 降水域Cでは、強エコー域は約20 km/hで北東進し たが、個々の強エコー域は10~20分程度で消滅してい て、積乱雲はあまり発達していなかった。22時45分以 降は、降水域Cは北東一南西の走向をもつ線状の構 造になり、降水が持続した。

以上から,降水域Aはゆっくり移動する積乱雲に よって同じ所で降水が長時間続き,猛烈な雨がもたら された.降水域Bは動きが速く,個々の強エコー域 の持続時間も短かったため,概ね1時間30mm程度 の降水となった.降水域Cでは積乱雲の移動は速い ものの,強エコーの移動方向と線状の降水域の走向が 同じだったため,降水が持続して,1時間に50mm を超える雨が観測された.

4. 地上解析

数十 km 程度しか離れていない3つの降水域の動き が大きく異なった原因について考察する.この事例に ついては数値予報で降水がうまく表現されていなかっ たことから、考察するにあたっては特に地上観測で得 られたデータを基とする.

第6図に19時から22時まで1時間毎のアメダスの 風,海面高度に補正した気温の分布図を示す。図中に は二重線で風の収束線を解析した。収束線は4本解析 でき、収束線I,収束線II,収束線III,収束線III)と した。また、明瞭な収束を伴わない等温線の尾根軸が あり、一点鎖線で示した。これらの収束線および等温 線と各降水域の関係を考察した。

降水域Aは19時の時点で, 鹿島灘からの北東風と 関東南部の東南東風で作り出されている収束線Iで発 生している. 収束線Iは20時にはアメダス風では不明 瞭になっている.このため,第6図では収束線 I の位置を950 hPa の毎時大気解析の収束を参考に破線で示した.21時以降,同毎時大気解析でも収束は不明瞭になった.降水域 A 付近における詳しい観測データがないため,このように下層風の収束が不明瞭な中,積乱雲がどのようなメカニズムで持続していたか,今回は考察することができなかった.

降水域 B は19時の時点で,収束線II と収束線IIの 交点付近に発生し,収束線IIIは冷気外出流にともない 次第に南下した.収束線IIの周辺では日中から高温か つ低圧部になっていた.そこに,第6図の緑色の矢印 で示した栃木県内での先行降雨による冷気外出流も加 わった北東風が流入し,この風の先端部で強エコーが 発生した.20時以降では,収束線IIIの南側に鹿島灘か らの北東風が入ってきたため,収束線IIIは不明瞭にな り,21時には収束線III'が新たに発生した.この収束 線III'の近傍で降水域 B2(第5図)が発生し,収束線 III'の南下にともない移動した.収束線の移動が速 かったことと収束線III'が新たに発生したことが,降 水域 B の移動を早め,降水時間が短かった原因だと 考えられる.

降水域Cは一点鎖線で示した等温線の尾根軸に 沿って移動した。この等温線の尾根軸は鹿島灘から流 入した北東風と栃木県を通って関東南部に流入した北 東風の境界に当たり,降水による気温低下のない相対 的に高温の領域であった。第7図に示した熊谷のウィ ンドプロファイラーの観測によると、21時前に3000 m付近で北西流から南西流に変わっている。上空 4000mで南西の風が7m/s(=約25km/h)と強エ コー域の速度と対応がよく,個々の積乱雲はこのよう な上空の風に流された可能性がある。MSM の500 m 高度面では、北よりの風によって低相当温位の気塊 (第6図の20°Cの等温線とほぼ対応する)が流入する 前に、茨城県南部から東よりの風によって相対的に高 相当温位の気塊が流入していた(図略).このことは, 気温は22°C以下だが、水蒸気量が多く(相対湿度が高 く),積乱雲を発生させやすい気塊であったことを意 味する、以上から、収束線 [の後面にある東よりの風 が水蒸気を補給し,降水域 C が発生したと考えられ る.

5.まとめ

2012年9月24日に三浦半島で発生した大雨について 解析した.本事例については、時間80 mm を超える 降水をもたらした水蒸気はいつ、どこから集まってき たか、大雨をもたらした積乱雲はどのような構造だっ たか、疑問点が多い。その中で、本稿ではなぜ近くに 存在する降水域が異なる動きをしたかという点につい て的を絞って考察した。

個々の降水域および積乱雲の動きは今回の事例のよ うにさまざまな要因によって異なる動きをする.しか し,そのような動きを数値予報モデルで正確に再現す るのはまだまだ困難である.今回の調査のように今後 も事例解析を積み重ねていくことは重要である.

謝 辞

本稿の執筆にあたり、気象庁予報部予報課海老原 智課長、気象研究所加藤輝之室長及び東京管区気象台 大久保 篤気象防災情報調整官には多くの有益な助言 をいただきました。この場を借りてお礼申し上げま す.