山形県における冬季の降水域形成の数値実験*

高 野 哲 夫**

1. はじめに

東北地方南部の日本海側に位置する山形県は、北に かちない すうない すうない すうない すうない と 音妻連峰、そして県央には朝日山地が連なり、その 地形は起伏に富んでいる(第1図)。また、冬季には 「三八豪雪(昭和38年1月豪雪)」に象徴されるような 厳しい豪雪に見舞われる。

山形県内の局地気象に関しては,庄内平野における 「清川だし」が特に有名であり,これまでにも多くの 研究報告が行われてきた。竹花(1957)は,山脈の内側 に寒気団が沈積して山頂を越えて溢れ出し,谷へ流れ 下るおろしの形態に似たものであることを指摘した。 竹内(1986)は地形によって引き起こされる山越え気 流のメカニズムが関与していることを考察した。山岸 ・加藤(1996)や山岸(2002)は仙台での高層気象観 測から,また佐々木ほか(2004)は現地での集中気象 観測を行い,各々フルード数との関連性を考察した。 また,力石ほか(2006)は奥羽山脈の東側に蓄積した 冷気が日本海側に降下するおろし風であることを述べ た。このように山形県内では,おろしのような山越え 気流のメカニズムに伴って,清川だしを始めとする 様々な局地的現象が形作られている。

本調査ノートでは,高野(2009)の数値モデルに加 え,新たに比湿の輸送方程式および凝結・降水過程に 関する簡単な仮定を導入し,季節風の強い場合と弱い 場合における降水域形成の再現実験を試みた。

© 2014 日本気象学会

第1図 山形県内の主な山岳地形.

2. 比湿の輸送方程式と凝結・降水過程の計算

本研究では高野(2009)を基に,新たに比湿の輸送 方程式(1)と凝結・降水過程を導入した。

$$\frac{\partial \overline{q}}{\partial t} + \overline{u_j} \frac{\partial \overline{q}}{\partial x_j} = Q \tag{1}$$

ここで, *u_j*, *x_j*は東西(*x*),南北(*y*)および鉛直 方向(*z*)の,各々速度成分と変位,*t*は時間,*q*は 比湿,*Q*は降水過程に伴う生成項を表す.変数の上 にある"--"は空間フィルタリングを表す.

凝結・降水過程は河村(2005)に従って、大気中の 水蒸気は氷点下でも常に水(過冷却状態)で在り続 け、降水に伴う露点の変化および雲の発生に伴う流れ への影響,潜熱の放出も考慮しないことを仮定して、 タイムステップ毎に次のような計算を行った。

まず飽和比湿 q_s に対し, $q \ge q_s$ であれば自動的に凝結量 $q' \equiv q - q_s$ を生じるものとする(高野 2012).さらにモデル係数(凝結量 q'の内,地上に落下する割

^{*} The idealized numerical experiments of the precipitation in Yamagata prefecture in winter.

^{**} Tetsuo TAKANO, 株式会社 SnowCast. takano@snowcast-web.com

合) α , タイムステップ間隔 Δt において $q'\alpha\Delta t$ が凝 結後, 瞬時に直下の地上に落下するものとした.この 落下に伴う大気中の比湿の減少が輸送方程式(1)の生 成項 Q に相当する.この1タイムステップ当たりの 落下分を地上降水量として順次積算していく(高野 2013).その一方で, $q'(1 - \alpha\Delta t)$ は大気中に残り, 引き続き式(1)に従って輸送される.この時,式(1)は 生成項 Q を 0 として扱うため実質的には移流方程式 として計算している.本研究では、この降水量を無次 元量として扱った.

また、山岳地形は高野(2009)と同様に階段状の ボックスとして表現した.比湿に関してはボックス内 外を区別せず、特別の拘束は行わないものとした. 尚、本モデルでは上記以外の物理過程は考慮していな い.

3. 平均的な降水量分布の再現実験

平均的な降水量分布の再現として,1981~2010年の 厳冬期(1~2月)の平均的なモデル大気場を構築 し,理想実験を試みた.以下に詳細を述べる.

3.1 数値モデルの概要

今回の解析対象は北緯37.5000°~39.3333°,東経 139.0000°~141.0000°の範囲,水平方向のサイズは東 西160 km×南北220 km,鉛直方向のサイズは4000 m の3 次元空間を想定した.

数値モデル地形は国土地理院・数値地図1kmメッシュを基に作成した。解析対象の1kmメッシュ標高 (東西160×南北220メッシュ)を取り出し、東西2× 南北2メッシュ毎に標高の平均値を求め、2km×2 kmメッシュ標高の数値モデル地形を作成した。また、数値積分におけるタイムステップ間隔は約1.67秒 (後述の代表速さ $U_0=12$ m/sの場合)、積分時間は約 12時間と各々設定した。

3.2 初期条件と境界条件

レイノルズ数 Reとフルード数 Fr は,代表速さ $U_0 = 12 \text{ m/s}$,下層の厚さ $H_0 = 1400 \text{ m}$,基準温位 $\theta_0 = 275 \text{K}$,温位差 $\Delta \theta = 7 \text{ K}$,重力加速度g,空気動粘度 ν から,

$$Re = \frac{U_0 H_0}{\nu} \tag{2}$$

$$Fr = \frac{U_0}{\sqrt{H_0 g \varDelta \theta / \theta_0}} \tag{3}$$

として求め (*Re*=1.3×10⁹, *Fr*=0.7), 積分期間中 は一定であると仮定した.

各パラメータは高層気象観測(秋田,1981~2010年 の各1~2月,09時および21時観測)を基に検討し た.代表速さ U_0 は850 hPa面の風速の平均値,下層 の厚さ H_0 は850 hPa面のジオポテンシャル高度の平 均値を各々考慮した.下層の温位 θ_0 はp=1000, 925,900,850 hPaの各等圧面における温位の平均 値,上層の温位 θ_0 + $\Delta\theta$ はp=850,800,700,600 hPaの各等圧面における温位の平均値を各々考慮し た.

季節風は,流入口に相当する西側境界面と北側境界 面から風速 U₀の一様流を与えた.風向は850 hPa 面 の合成風の風向の平均値を考慮し280°の方角(西~西 北西の季節風)とした.

相対湿度 R_h ,飽和比湿 q_s の鉛直プロファイルも上 記の高層気象観測の平均プロファイルを基に構築した (第2図).比湿 q は,西側境界面上(x=0)の各格 子点には次式(4)で与える一方,その他は一律ゼロに

"天気"61.6.

第3図 数値解析の結果(平均場). 左から順に α=0.1, 0.2, 0.3, 0.4 (降水量のレベルは無次元量として表 記).

クリアした.これは水蒸気が全て西側境界面からのみ 流入することを想定したものである.

$$q(y,z)|_{x=0} = q_{s}(z) \times \frac{R_{h}}{100}$$
 (4)

比湿の境界条件は、流入口に相当する西側境界面で は初期条件で固定し、その他は全て開放境界条件(勾 配ゼロ条件)とした。その他の境界条件は、高野 (2009)の理想実験と同様である。

3.3 計算結果

第3図には数値計算の結果を示した.この計算では 降水のモデル係数 α について,試験的に α =0.1, 0.2, 0.3, 0.4の4つの条件を与えた. α の値が小さ い場合は,降水域は比較的広く少なく分布する一方, α の値が大きくなるにつれて極大域付近の狭い範囲に 多く集中しやすい傾向が見られた.

降水域の分布は、出羽丘陵や朝日山地、さらに飯豊 山地を中心とした山岳付近に広がり、山岳地形に沿っ て極大域が現れている。降水域は海上から内陸に進入 しようとするが、これらの山岳地形によって進入を妨 げられる様子が解析されている。

第4図には比較のため、1981~2010年の各1~2月 の2ヶ月間の平均降水量(mm)の分布を示した。 400 mm以上の領域は出羽丘陵や朝日山地、さらに飯 豊山地を中心に広がり、特に500 mm以上の極大域は 朝日山地から飯豊山地付近にかけて広がっている。ま た、これらの山岳より内陸側では降水量が少なくなっ ている。

第3図と第4図の比較から、降水量の極大域の位置

第4図 降水量の平均分布(1981~2010年,1 ~2月).アメダス観測値を基に等値線 のマニュアル解析により作成.100 mm 毎に山形県内を通る等値線を描画.

や走向に関して両者の特徴は概ね一致している。

4. 具体的な事例の再現実験

次に、本モデルを用いて季節風の弱い(低フルード 数の)場合と季節風の強い(高フルード数の)場合の 事例解析を行った。以下の実験では、上記3.3の α=

501

0.3の条件において,風向 (角度) および風速(フ ルード数)のみを変化させ た.ここで,αの値は上記 3.3で用いた0.1~0.4の中 間の値を用いたものであ る.

4.1 低フルード数の場合 (2013年2月10日)

第5図aに2013年2月 10日の1kmメッシュ解析 雨量図を示す。この図は同 日10時から21時までの計12 件の1kmメッシュ解析雨 量 GPV (毎正時に観測さ れる前1時間降水量 「mm/h]) を積算した12時 間降水量(09~21時)を表 示している。降水域は概 ね,出羽丘陵や朝日山地, さらに飯豊山地と言った山 岳地形よりも沿岸側を中心 に分布しており,特に庄内 平野付近に極大域が解析さ れている (図中A).

同日の高層気象観測(秋田)を基に、 $U_0 = 9 \text{ m/s},$ $H_0 = 1410 \text{ m}, \theta_0 = 272 \text{ K},$ $\Delta \theta = 5 \text{ K} を設定し、風向$ 285°, <math>Fr = 0.60条件で計 算を行った。

計算の結果を第6図a に示す。降水量の極大域は

概ね,出羽丘陵や朝日山地,さらに飯豊山地と言った 山岳地形よりも海側を中心に分布しており(図中 A'),この特徴は第5図aと概ね一致している.

4.2 高フルード数の場合(2013年1月18日)

第5図bに2013年1月18日の1kmメッシュ解析雨 量図を示す.降水域は朝日山地の北側から東北東側に かけて(図中B),および南側の飯豊山地から吾妻連 峰付近にかけて(図中C),各々帯状に広がり,内陸 側で極大域が解析されている.

同日の高層気象観測(秋田)を基に、U₀=14 m/s,

(a) 2013-02-10

第5図 1kmメッシュ解析雨量図(フルード数の比較).(a)2013年2月10日,
(b)2013年1月18日の09~21時の12時間降水量.1kmメッシュ解析雨量GPVより作成.

(mm/12h)

10~15

5~10

0~ 5

15 ~

第6図 数値解析の結果 (フルード数の比較). (a) Fr=0.6, (b) Fr=1.0 (降水量のレベルは無次元量として表記).

 $H_0 = 1380$ m, $\theta_0 = 270$ K, $\Delta \theta = 4$ Kを設定し,風向 300°, Fr = 1.00条件で計算を行った.

計算の結果を第6図bに示す。降水量の極大域は 朝日山地沿いに広がる他、その北東(図中B)およ び南東(図中C)に位置する内陸側にも進入してお り、この特徴は第5図bと良く一致している。

4.3 まとめと考察

第5図および第6図から,季節風が弱い(フルード 数が低い)場合は、出羽丘陵や朝日山地、飯豊山地よ りも沿岸側を中心に広がることが確認された。一方、

"天気"61.6.

66

季節風が強い(フルード数が高い)場合は、朝日山地 付近に広がる他、その南北にも各々迂回するように、 さらに内陸側へと進入していく傾向が確認された.

フルード数が低い場合,季節風は朝日山地および, その南北に連なるより標高の低い丘陵地帯さえも乗り 越えることが出来ず,沿岸側を中心に降水域を形成す る.その一方で,フルード数が高い場合は,朝日山地 の南北に連なる丘陵地帯を乗り越え,降水域はさらに 内陸側へと進入するものと考えられる.

今回構築された数値モデルは,実際の大気の複雑な 条件に比べて大幅に単純化・理想化されたものである が,地形の影響に伴う降水域形成の特徴を再現するこ とができた.

5. 今後の課題と展望

本モデルの数値計算スキームは未だ発展途上であり 検討すべき課題は多い。一例を挙げると、上端境界面 および流入側境界面において、現在適用している固定 条件の代わりにレーリーダンピングの適用を検討する 余地がある。

今回は高野(2009)と同様に、上端境界面および流入側境界面に固定条件を適用したため、各境界付近で 内部重力波の反射ノイズによる影響が現れた。

そこで,これらの境界条件にレーリーダンピングを 適用することにより,反射ノイズを抑制しながら外部 環境の条件を反映できることが期待される.

謝 辞

研究や教育を本務としない環境にあって本研究を進 めるに当たり,株式会社 SnowCast 代表取締役・杉 浦 聡気象予報士より,多くの御支援を頂きました。 また,本調査ノートの投稿・改稿に際しては,担当編 集委員の茂木耕作博士より丁寧なアドバイスを頂きま した。 地上および高層気象観測データ,1kmメッシュ解 析雨量 GPV は,気象庁・(一財)気象業務支援セン ターより公開および提供されたデータを使用しまし た.本研究の数値モデル地形の構築および第1図の作 成には国土地理院の数値地図1kmメッシュを使用し ました.

以上,各関係者の皆様に心より感謝を申し上げま す.

参考文献

- 河村哲也,2005:流れのシミュレーションの応用! (コン ピュータ環境科学ライブラリー④). 山海堂,123-124.
- 力石國男, 蓬田安弘, 石田祐宣, 2006:山形県庄内平野の 強風「清川だし」の発生機構について. 第19回風工学シ ンポジウム論文集, 19-24.
- 佐々木華織, 菅野洋光, 横山克至, 松島 大, 森山真久, 深堀協子, 余 偉明, 2004: "清川ダシ"吹走時に観測 された強風域および風の鉛直構造の特徴. 天気, 51, 881-894.
- 高野哲夫,2009:3次元熱流体数値モデルの独自開発 一山形県置賜地方の冬季局地風への適用一.天気,56, 471-476.
- 高野哲夫,2012:新潟県内における冬の季節風と降雪をも たらす雲域形成の関係.日本気象学会2012年度春季大会 講演予稿集,P152.
- 高野哲夫,2013:新潟県内における冬の季節風とフルード 数,降水域形成の関係.日本気象学会2013年度春季大会 講演予稿集,P308.
- 竹花峰夫,1957:地形風について(清川ダシと広戸風). 天気,4,223-224.
- 竹内衛夫,1986:山形県庄内平野中部の局地風について. 天気,33,219-231.
- 山岸米二郎,2002:気象予報のための風の基礎知識.オーム社,50-56,178-182.
- 山岸米二郎,加藤 廣,1996:山形県北部の局地強風の発 現機構の考察.気象庁研究時報,48,3-13.