───調査ノート───

近畿日本海側にかなりの多雪をもたらす大気の流れの特徴

竹 村 和 人*1·中 江 祥 浩*2·藤 原 義 寿*3

1. はじめに

冬季日本付近ではしばしば西高東低型の冬型の気圧 配置となり、日本海側を中心に曇りや雪または雨の日 が多くなる.また、強い寒気の影響で大雪や荒れた天 気となり、社会経済に甚大な被害を及ぼすこともあ る.一方、太平洋側の地域は脊梁山地の風下側に位置 し、晴れて乾燥する日が多い.このため、日本海側で は防災や除雪体制等のインフラの確保等の観点から、 中長期予報における冬の降雪量を精度良く予測するこ とは重要である.近畿地方では、兵庫県北部、京都府 北部及び滋賀県北部が日本海側に属し、他の日本海側 の地域と同様に、冬季は降雪が多い気象特性を有する.

近畿地方付近における地勢図を確認すると(第1 図),兵庫県北部から京都府北部にかけて丹波高地が, そのさらに西側には中国山地が存在し,近畿・中国地 方の脊梁を成す.また,近畿地方は中国・四国地方の 東側に位置するため,西風が卓越する状況ではこれら の地方の風下側となる.このため,冬型の気圧配置に 伴って西風が卓越する場合は,雪雲が天候に及ぼす影 響は近畿地方の日本海沿岸付近に限られることが多 く,内陸部へは進入しにくい.一方,北風が卓越し雪 雲が北方から近畿地方へ進入する場合は,近畿日本海 側の広い範囲に雪雲が進入し,他の地方と同様に降雪 量が増加する.さらに,風向によっては近畿太平洋側 の一部地域にも雪雲が進入し,降雪をもたらす場合も ある.これらの特徴により,近畿日本海側の降雪量は,

*1 (連絡責任著者) Kazuto TAKEMURA, 気象庁気候情 報課.

k-takemura@met.kishou.go.jp

- *² Yoshihiro NAKAE, 彦根地方気象台.
- *³ Yoshihisa FUJIHARA,大阪管区気象台.

他の地方と比べて気圧配置や風系に特に鋭敏であるこ とが考えられる.

気象庁における短期予報の精度向上に資する調査研 究においても、近畿地方での降雪域と風系との関連性 は重要な調査課題と位置づけられており、これまで精 力的な調査が実施されてきた.一方、近畿日本海側で の冬の降雪量と関連する総観規模の大気循環場の特徴 は明らかではない.そこで本調査では、大気の長期再 解析データを用いて、近畿日本海側、北陸地方、山陰 地方の3地域における冬の降雪量と関連する大気循環 場の特徴を比較することにより、近畿日本海側にかな りの多雪をもたらす大気の流れの特徴を調べた.

第1図 近畿地方周辺における地勢図.

^{© 2022} 日本気象学会

2. 使用データと解析手法

大気循環場の解析には気象庁55年長期再解析データ (Kobayashi et al. 2015),海面水温の解析には COBE-SST (Ishii et al. 2005)の1958年12月~2022年2月の 期間における月平均値を冬期間(12~2月)で平均し て使用した.近畿日本海側,北陸地方及び山陰地方の 3地方における冬の降雪量平年比及び階級区分値は, 気象庁ホームページ「過去の地域平均気象データ検索」 から取得して用いた.ここで,冬の気候値は1961/62~ 2021/22年の61年間での平均値とし,偏差は気候値か らの差と定義した.平年比は1991~2020年の30年平均 値との比で定義される.

本調査では、近畿日本海側でのかなりの多雪(冬の 降雪量が1991~2020年の30年間で上位10%)と関連す る大気の流れの特徴を、隣接する北陸・山陰地方の特 徴と比較するため、各地方において降雪量がかなり多 かった年(第1表)を対象に、大気循環場の合成図解 析を行った.合成した偏差の統計的有意性の評価に は、Studentのt検定を用いた.合成図解析では、主 に99%の信頼度水準で統計的に有意な偏差に着目する.

冬平均の500hPa高度偏差について、日本の東海上 (140°E~170°E,40°N)での領域平均で定義される東 方海上高度,及び日本の西(100°E~130°E,30°N)と 日本の東海上(140°E~170°E,30°N)での領域平均の 差で定義される30°N西谷指数を,それぞれ西回り及び 北からの寒気流入の指標として用いた.東方海上高度 が負で大きいほど、日本の東海上で500hPa高度がよ り低く、気候値と比べて東谷傾向が強いことを示す. 30°N 西谷指数が正(負)の場合は、気候値と比べ東谷 傾向が強(弱)いことを示す.ただし、日本付近で高度 が東西一様に低い場合には、両指数が必ずしも東谷傾 向の強さを示すとは限らないことに注意が必要である.

3. かなりの多雪と関連する北半球の大気循環場

はじめに,各地方において冬の降雪量がかなり多い 年で合成した,北半球域での大気循環偏差の分布を第

2回に示す. 500hPa 高度偏差の合成図(第2回上段) では、ヨーロッパからユーラシア大陸北部を経て日本 付近にかけて,正位相のユーラシア(EU)パターン (Ohhashi and Yamazaki 1999; Wang and Zhang 2015; Maeda et al. 2021) に対応する波列状の偏差パ ターンが卓越する特徴が、3地方で共通して見られる (第2図a~c)、また、東シベリア付近で正偏差、その 南で負偏差となる正位相の西太平洋(WP) パターン (Wallace and Gutzler 1981) も明瞭である. 正位相の EU パターン及び WP パターンは、日本付近への強い 寒気の流入をもたらすテレコネクションパターンとし て知られている。これらのパターンに対応して、日本 付近で高度の負偏差が見られる特徴は3地方の合成図 で共通するが、負偏差の中心は北陸地方及び山陰地方 の合成図では西寄りである一方(第2図b, c),近畿 日本海側の合成図では東寄りである(第2図a). これ らの特徴は、近畿日本海側での多雪は東谷傾向が気候 値と比べて強いことと密接に関連する一方、北陸地方 及び山陰地方での降雪量は、東谷傾向への依存性が弱 い可能性を示している.

次に3地方での海面気圧偏差の合成図(第2図中段) を比較すると、シベリア高気圧の張り出しの強化に対 応するユーラシア大陸上での正偏差は共通して見られ るが(第2図 d~f). 中国大陸に広がる正偏差の振幅 は、近畿日本海側の合成図で最も大きく、シベリア高 気圧が統計的に有意に増幅している(第2図d). 一 方,日本の東海上の中緯度帯では負偏差が東西に広が り、アリューシャン低気圧の中心が南に偏る傾向を示 している.また、この負偏差域の西側での統計的に有 意な領域は、北陸地方及び山陰地方の合成図では北~ 東日本付近にかかる一方(第2図e,f),近畿日本海 側の合成図では日本の東海上でかつ振幅がより大きい (第2図 d). 海面気圧に見られる統計的に有意な負偏 差域の位置の違いは、500hPa 高度の合成図で示した 負偏差の中心位置の違いにも関連すると考えられる. これらの特徴は、近畿日本海側における多雪が、他地

第1表 近畿日本海側,北陸地方及び山陰地方における冬の降雪量がかなり多かった年.近畿 日本海側の下線で強調した年は,近畿日本海側のみ降雪量がかなり多かった年を示す.

地方	合成図解析の対象年
近畿日本海側	1963 1966 1967 1974 1975 1977 1981 1984 1986 <u>1996</u> 2000 <u>2006</u> <u>2022</u>
北陸地方	1962 1963 1966 1967 1968 1969 1970 1971 1974 1975 1976 1977 1978 1980 1981
	1983 1984 1985 1986 2001 2012 2018
山陰地方	1963 1967 1968 1971 1975 1977 1981 1984 1985 1986 2000 2011 2012

方と比べて海面気圧偏差の東西コントラストが大きい こと、すなわち冬型の気圧配置の強化と密接に関連す ることを示している.

さらに3地方での850hPa風偏差の合成図(第2図下 段)を比較すると、北陸地方及び山陰地方の合成図で は、日本海付近に中心を持つ低気圧性循環偏差の周縁 に沿う風偏差が卓越しており、寒気は主に東シナ海や 九州・四国地方に向かって進入している(第2図h, i,気温偏差の図は省略).これは、西回りの寒気の特 徴を示している、一方、近畿日本海側の合成図では、

第2図 (1列目)近畿日本海側,(2列目)北陸地方及び(3列目)山陰地方における冬の降雪量がかなり多い年 (第1表を参照)で合成した,(上段)500hPa高度偏差(5m間隔),(中段)海面気圧偏差(0.5hPa間 隔),(下段)850hPa風偏差(単位ms⁻¹).上段及び中段の黒線は気候値を示し,等値線間隔は,500hPa 高度は100m,海面気圧は4hPa.白色の実線及び薄い陰影は正偏差,破線及び濃い陰影は負偏差域を示 す.上段と中段のドットは,偏差が99%信頼度水準で統計的に有意な領域を示す.統計期間は,1961/62~ 2021/22年の61年間の冬.

低気圧性循環偏差の中心は日本の東海上に位置し,日 本海から東シナ海にかけての広い範囲で北西風偏差と なり,北からの寒気流入が卓越している(第2図g). この広範囲で卓越する北西風偏差は,近畿地方に強い 寒気及びそれに伴う降雪雲が日本海方面から内陸に向 かって進入しやすいことを示しており,近畿日本海側 での多雪傾向と対応している.低気圧性循環偏差の中 心位置の違いは,海面気圧の合成図に見られる負偏差 の中心位置の違いと対応している(第2図 d~f).さ らに,北からの寒気流入は,東谷傾向が強いこと(第 2図 a)に対応すると考えられる.

4. かなりの多雪と関連する熱帯域の大気循環場

冬季日本付近への強い寒気の南下をもたらす主な要 因として, 前節で触れた EU パターンや WP パターン の他, ラニーニャ現象の発生や熱帯季節内振動に伴う 東南アジア付近での活発な積雲対流活動も指摘されて いる (Ueda et al. 2015). このことを踏まえて, 降雪 量がかなり多い冬で合成した熱帯域の海面水温偏差及 び大気循環偏差の分布を第3図に示す。海面水温偏差 の合成図を3地方で比較すると(第3図 a~c). 偏差 の振幅には違いが見られるものの、どの合成図におい てもインド洋及び中・東部太平洋赤道域では負偏差. 北太平洋西部の熱帯域では正偏差であり、太平洋赤道 域ではラニーニャ現象発生時の海面水温偏差の分布を 示している. また. 海面水温偏差の分布に対応して. 3地方の合成図ともに、対流圏上層ではインド洋西部 及び太平洋中部では収束偏差すなわち対流不活発.東 南アジア付近では発散偏差すなわち対流活発となって いる(第3図 d~f). さらに東南アジア付近での活発 な対流活動に対応して、中国付近の対流圏上層で高気 圧性循環偏差,その下流側に位置する日本付近では低 気圧性循環偏差を示しており、熱帯域の対流活動が対 流圏上層の亜熱帯ジェット気流の蛇行を通して日本付 近の大気循環場に影響を及ぼす傾向が見て取れる(第 3図 g~i). 亜熱帯ジェット気流の蛇行に着目するた めに200hPa 南北風偏差の合成図を見ると、近畿日本 海側の合成図(第3図g)では、北陸地方及び山陰地 方の合成図での分布(第3図h.i)と比べてやや東に ずれており、500hPa 高度偏差の合成図で示した東谷 傾向が気候値と比べて強いことに対応する(第2図 a~c). 一方, 3地方の合成図における熱帯域の対流活 動(第3図 d~f)には、南北風偏差に見られる東西方 向のずれと対応する位置の違いは見られない.また3

地方の合成図ともに、南北風偏差の波列状の偏差パ ターンは、中国付近よりさらに上流側のヨーロッパ付 近にまで遡ることができる.このことから、3地方の 合成図における日本付近での気圧の谷の位置は、熱帯 域の海面水温及び対流活動に加えて、EUパターンや WPパターンを含む北半球での大気の内部変動による 影響も強く受けている可能性が考えられる.また、日 本近海での海面水温は明瞭な負偏差となっているが (第3図 a~c)、これには日本付近への強い寒気の南下 に伴う海面冷却の効果も現れていると考えられる.

12~2月の各月平均場を対象とする合成図解析の結 果もまた、冬平均の合成図と類似した特徴を示した が、偏差の振幅や位置は月によってやや異なっていた (図略).これには、月による気候値の違いのほか、南 岸低気圧や日本海寒帯気団収束帯 (JPCZ) に伴う、よ り短い時間スケールでの降雪が影響している可能性が ある.

東谷傾向による近畿日本海側での多雪への影響を, 冬平均の事例で評価するため,3地方間で近畿日本海 側のみ降雪量がかなり多かった1995/96年,2005/06年 及び2021/22年の冬(第1表の下線を施した年)におけ る500hPa高度偏差を第4図に示す.この3年間の冬 はいずれも,日本付近の高度は西側で正偏差,東側で 負偏差となっており,東谷が強い傾向を示している. これらの事例に見られる特徴は,第2図aに示した 500hPa高度の合成図解析の結果と対応しており,東 谷傾向の強化が近畿日本海側での多雪と密接に関連す ることを示している.

5. 降雪量平年比との相関解析

冬の東谷傾向に伴う近畿日本海側の降雪量への影響 を統計的に評価するため、3地方における冬の降雪量 平年比と東方海上高度及び30°N 西谷指数との相関解 析を行った.降雪量平年比と東方海上高度の散布図 は、地方に依らず両者の間に高い相関関係を見出して おり、両者の相関係数は近畿日本海側で最も高い(第 5図 a~c).また、降雪量平年比と30°N 西谷指数の散 布図では、近畿日本海側では両者に統計的に有意な相 関が認められる一方(第5図 d)、北陸地方及び山陰地 方では両者に相関は見られない(第5図 e,f).これ らの結果は、近畿日本海側での多雪が、北陸・山陰地 方と比べて東谷傾向が強いこと、すなわち北からの寒 気流入とより密接に関連することを示している.な お、各地方における冬の降雪量は、冬平均での東谷傾

向のみならず,日本付近で東西一様に高度場が低下す ることや,短い時間スケールでの強い寒気の影響も含 まれることに留意する必要がある. 6. まとめ

本調査では,近畿日本海側に多雪をもたらす大気の 流れの特徴を調べるため,北陸・山陰地方を含む3地

第4図 (a) 1995/96年冬, (b) 2005/06年冬及び (c) 2021/22年冬で平均した500hPa 高度(単位 m). 黒線は気候 値(等値線間隔は100m), 白色の実線及び薄い陰影は正偏差, 破線及び濃い陰影は負偏差域(偏差の間隔 は10m).

第5図 (1列目)近畿日本海側,(2列目)北陸地方及び(3列目)山陰地方における冬の降雪量平年比(横軸; 単位%)と各種指数(縦軸;単位 m)との散布図.上段は東方海上高度,下段は30°N 西谷指数.図の右 上の数値は相関係数の値,破線は信頼度水準99.9%以上の回帰直線をそれぞれ示す.統計期間は,1961/ 62~2021/22年の61年間の冬.

方での冬の降雪量平年比がかなり多い年を対象とする 合成図解析及び相関解析を行った.その結果,近畿日 本海側でかなりの多雪となる場合には,日本付近では 東谷が気候値と比べて強まる傾向が見られた.また,

強い冬型の気圧配置に伴って日本海では北西風偏差が 卓越し,雪雲が日本海から近畿地方の内陸部へ進入し やすいことが示唆された.一方,北陸地方及び山陰地 方での降雪量は,近畿日本海側と比べて東谷傾向への 依存性が弱いことが考えられた.また,北陸・山陰地 方でかなりの多雪となる場合は,近畿日本海側でかな りの多雪となる場合と比べて,日本付近に中心を持つ 低気圧循環偏差の周縁に沿って寒気が西回りで進入す る傾向が見られた.近畿日本海側でのかなりの多雪と 東谷傾向が強いこととの関連性は,1995/96年,2005/ 06年及び2021/22年の冬の事例解析,及び降雪量平年 比との相関解析からも確認された.

3地方の合成図より,海面水温はラニーニャ現象発 生時に現れやすい偏差の分布を示し,これに対応して 東南アジア付近で対流活動が活発となる傾向が見られ たが,それに伴う日本付近での東谷傾向への直接的な 影響は確認されなかった.日本付近での上空の気圧の 谷の強さや位置を規定する要因として,熱帯の対流活 動の他,大気の内部変動による影響も大きい可能性が 示唆された.

本調査で示した結果は,近畿日本海側での降雪量 は,気圧配置や風系に対して鋭敏であり,その特性は 同じ西日本に属する山陰地方や近隣地方である北陸地 方とは大きく異なることを示している.本調査から得 られる知見は、地域特性を踏まえた冬の降雪量の予測 精度の向上に繋がることが期待される.

参考文献

- Ishii, M., A. Shouji, S. Sugimoto and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol., 25, 865-879.
- Kobayashi, S. *et al.*, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48.
- Maeda, S., K. Takemura and C. Kobayashi, 2021: Planetary wave modulations associated with the Eurasian teleconnection pattern. J. Meteor. Soc. Japan, **99**, 449-458.
- Ohhashi, Y. and K. Yamazaki, 1999: Variability of the Eurasian pattern and its interpretation by wave activity flux. J. Meteorol. Soc. Japan, 77, 495-511.
- Ueda, H., A. Kibe, M. Saitoh and T. Inoue, 2015: Snowfall variations in Japan and its linkage with tropical forcing. Int. J. Climatol., 35, 991–998.
- Wallace, J. M. and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784-812.
- Wang, N. and Y. Zhang, 2015: Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China. Climate Dyn., 44, 1017–1028.