2021年7月21日に関東地方で発生した線状の雲の再現と発生原因

中 西 幹 郎*

1. はじめに

2023年も線状降水帯による災害が後を絶たない年に なってしまった.線状という言葉を耳にするたびに思 わず身構えてしまうが,おそらくほとんど災いのない 線状の話題を取り上げたい.

1年延期されて行われた東京オリンピック開会直前 の2021年7月21日,オリンピック用に特設された気象 庁のポータルサイト(現在は閉鎖)の衛星動画を見て いて,相模湾沿岸に第1図aに示す線状の雲を見つけ た.しばらくしてこの雲は消失したが,かわって三浦 半島上に一筋,あるいは関東平野の広い範囲にわたっ て幾筋かの線状の雲が現れた(第1図b).第1図c は,このとき三浦半島のある場所から南南西方向の空 を撮った写真である.

幾筋もの雲は日頃から目にしており、その発生原因 は明らかであるが、前二者の一筋の雲の原因は何だろ うか. ずっと気になっており、アメダスなどのデータ を調べたが、よくわからなかった. 今回、Weather Research and Forecasting (WRF)モデル (WRF 2023) を使用して調べたところ、大雑把な解析であるが、原 因らしきものが見えたので報告する.

計算の概要

WRFモデルのバージョン4.3.3を日本域に適用した (第2図). この領域を東西・南北方向に5km間隔で 455×503個の格子に分割し,鉛直方向は上端50hPaま で45層に分割した.線状の雲を再現するには5kmの 解像度は不十分である.試みに,関東地方周辺を1km 間隔で401×401個の格子で分割する領域(第3図の赤 枠)を加え、2方向ネスティング手法で計算した. 選 択した物理過程オプションは

・Mellor-Yamada-Nakanishi-Niino レベル2.5

• modified Noah-MP (Nakanishi 2023)

· aerosol-aware Thompson-Eidhammer

・Rapid Radiative Transfer Model for GCMs である.

初期値・境界値は European Centre for Medium-Range Weather Forecasts (ECMWF)のアーカイブ された予報値 (ECMWF 2023)のうち、3時間ごと水 平0.25°間隔のものを使用した.計算は2021年7月20 日21時から14時間実行した.このとき、先島諸島には 台風が近づいていたが、西日本から北日本は高気圧に 広く覆われた.

3. 結果

3.1 相模湾沿岸の雲

第3図に、21日4時から7時までの1時間ごとの海 抜500mにおける風,水蒸気混合比および雲水混合比 の水平分布を示す. 4時(第3図a)には. 太平洋上 を南東から吹く風は、大半が標高500m以上の山地の 伊豆半島を越えることができず、相模湾上で南寄りの 風になる.この風に乗って、伊豆半島南部の湿った空 気は、白ハッチで図示される雲を伴って相模湾を北上 する (第3図b). 6.7時 (第3図c.d) になると. 湿った空気とともに雲は相模湾沿岸に到達する. 第1 図 a の衛星画像と比較すると、計算結果の線状の雲は 相模湾上での切れ間は明瞭ではないが、ほぼ同じ位 置・方向に現れている.実は、JAXA(2023)の画像 を見ると、可視画像で雲が確認できる5時過ぎから、 雲は相模湾沿岸にあった. 念のため, ECMWF の初期 値をほかの時間帯に変えて計算してみたところ、やは り時間は遅れるが、湿った空気と雲は同じように北上

^{*} Mikio NAKANISHI, 一般財団法人日本気象協会. nakanishi.mikio@jwa.or.jp

^{© 2024} 日本気象学会

第1図 2021年7月21日6時(a),9時4分(b)における「ひまわり8号」の可視画像、および9時4分に三浦 半島のある場所から撮った南南西の空の様子(c).可視画像は東京オリンピック用に気象庁が特設した ポータルサイト(現在は閉鎖)からダウンロードした.

第2図 モデルの計算領域.カラーは標高を表す. 赤色の枠は2方向ネスティング手法を 使って1kmの格子間隔で詳細に計算す る領域を示す.

した(図は省略).時間のずれはあるものの,計算結果 は衛星画像と同じ現象を表し,線状の雲は,伊豆半島 南部の湿った空気の北上とともに現れた可能性が高い と考える.

第4図に、21日6時から9時までの1時間ごとの北 緯35.25°における風、水蒸気混合比および雲水混合比 の東西鉛直断面図を示す.6時から8時にかけて(第 4図 a~c),東経139.5°前後の海抜500m付近に、一な いし三筋の雲が出現している.衛星画像(第1図 a)も よく見れば、少なくとも二筋の雲が確認できる.

3.2 三浦半島上の雲

第5図は第3図と同様の水平分布図であるが、21日 8時から11時までの分布を表す.8時から10時(第5 図 a~c)の三浦半島上は、この海抜高度では明瞭な雲 はないが、水蒸気混合比の高い線状の分布が確認できる.

第4図 d に戻ると、139.6°付近の三浦半島上空の海 抜500m あたりに、第1図 b と c の一筋の雲を再現し ていると思われる雲が見える.この雲は、三浦半島の 地形による強制上昇で発生したようである.ただし、 第3図と第5図での相模湾上の湿った空気の一連の流 れや、第4図の相模湾沿岸の雲の発生高度との一致度 から、三浦半島上の雲も伊豆半島南部から運ばれた 湿った空気が主な起源とみる.

"天気"71.2.

 第3図 2021年7月21日の1時間ごとの海抜500mにおける風(矢羽根),水蒸気 混合比(カラー)および雲水混合比(白ハッチ)の水平分布.(a)4時,
(b)5時,(c)6時および(d)7時.風速の小数点以下は切り捨てて、矢 羽根の長い羽根は2ms⁻¹,短い羽根は1ms⁻¹,○は1ms⁻¹未満を表す。
中央付近の東西の白い実線は第4図の鉛直断面の位置を示す.なお,標高 500m以上の地形がある場所は白抜きで表されている。

第4図 2021年7月21日の1時間ごとの北緯35.25°における風(矢印),水蒸気混合比(カラー)および雲水混合比(白ハッチ)の東西鉛直断面図.(a)6時.(b)7時.(c)8時および(d)9時.断面の位置は第3図を参照.風は鉛直断面に沿う風を表す.茶色の塗りつぶしは地形を表す.

第5図 第3図と同様. ただし, (a) 8時, (b) 9時, (c) 10時および (d) 11時. 房総半島付け根の東西の白い実線は第6図の鉛直断面の位置を示す.

3.3 関東平野上の雲

21日8時から10時(第5図 a~c)には、東京・埼玉 の上空の海抜500mに雲が出現している。第1図bの 雲を表しているが、衛星画像のように、幾筋もの線状 の雲の形状は明瞭ではない。衛星画像上で測ると線状 の雲の間隔は2~3km程度なので、格子間隔1kmの シミュレーションは再現できるかできないかの限界に 近いからであろう。この線状の雲はほぼ風向の方向に 軸を持って並んでいるので、鉛直シア流中の熱対流に よって形成されたものに間違いない(例えば、小倉 1997).11時(第5図 d)には、この雲は海抜500mか らはほぼ消えた。現実の雲は幾筋も並んだ線状ではな くなり、内陸に流れ、一部は消失して分布面積は縮小 した(JAXA 2023).

9時以降(第5図b~d)になると, 房総半島の北東 部に, 海抜500mの高度では雲を伴っていないが, 線 状の高水蒸気量の分布が現れる. 第6図は第4図と同 様の, 北緯35.6°の東西断面図である. 9時以降(第 6図b~d)は, 房総半島上の対流が激しくなり, 10時 (第6図c)には房総半島の西側, 11時(第6図d)に は東側でも海風循環とみられる対流が起こり, 海抜 1000m前後の大気境界層の上端付近に雲が発生してい る. 第5図とあわせて見ると, この雲は第1図bや JAXA (2023)の画像の雲に対応し, 局地循環で現れ たものと考えられる.

4. まとめ

晴天の関東平野に、少なくとも三つの起源が異なる 線状の雲が現れた.線状の雲というと、鉛直シア流中 の熱対流あるいは海風などの局地前線に伴う雲を思い 出す.東京・埼玉上空と房総半島上に見えていた雲が それらである.

三つ目の相模湾沿岸や三浦半島上の一筋の雲は,特 に前者は周囲に大きな地形の起伏の変化がなく,その 発生原因がよくわからなかった.シミュレーションに よれば,南からの湿った空気の流入によるものと考え られる.この空気の流入は,伊豆半島が流路を集中さ せた結果と考えられるので,地形がもたらした現象と いえる.

本文では取り上げなかったが、さらにもう一つ、第 1図bの衛星画像に気になる雲がある。伊豆大島や銚 子上空で東西に走る雲である。これらの雲は時間とと もに南に流れていた。海抜およそ7000mより上は関東 地方のほぼ全域で北風が吹き、かなりの鉛直シアが

"天気"71.2.

第6図 第4図と同様.ただし,(a)8時,(b)9時,(c)10時および(d)11時. 断面の位置は第5図を参照.

あった. Kelvin-Helmholtz 不安定波(例えば,小倉 1997)に伴う雲の可能性もあるが,上空の鉛直格子間 隔が粗いためか,リチャードソン数が0.25以下(ただ し,10以下なら海抜6000~7000mに存在する)の空間 は見つからず,詳細は不明である.なお,筆者は名前 ぐらいしか知らないが,Holmboe不安定波というのも あるらしい.ご興味のある方は,調べて報告していた だけるとありがたい.

5. おわりに

大空や衛星画像を眺めていると、これは何?と興味 をそそる雲の分布を見つけることがある.この雲の発 生原因を調べるとき、まずは観測値を使うことを考え る.ところが、山深い場所や海上にはアメダス観測点 はないし、ましてや高層気象観測点は陸上でも数少な い.このようなとき、WRFモデルに代表される数値 シミュレーションが威力を発揮する.ただし、それな りの計算機資源が必要であるが.

重苦しい災害のニュースが多い昨今,いつまで続け られるか分からないが,気楽に読める話題を見つけて 報告したい.

謝辞

編集を担当してくださった田口晶彦氏,編集委員長 の青栁曉典氏には,貴重なご意見をいただきました. ここに深く感謝し,お礼を申し上げます.

参考文献

- ECMWF, 2023: IFS documentation. https://www.ecmwf. int/en/publications/ifs-documentation (2023.10.1閲覧).
- JAXA, 2023: JAXA ひまわりモニタ. https://www.eorc. jaxa.jp/ptree/index_j.html (2023.10.1閲覧).
- Nakanishi, M., 2023: Reevaluating the surface energy balance and soil thermal diffusion equations in the Noah multi-parameterization (Noah-MP) scheme. SOLA, **19**, 135-141.
- 小倉義光, 1997:メソ気象の基礎理論. 第4章. 東京大学 出版会, 55-70.
- WRF, 2023: WRF users' page. https://www2.mmm.ucar. edu/wrf/users/(2023.10.1閲覧).